Bound on the Risk for M-SVMs

Yann Guermeur

André Elisseeff

LORIA

MPI for Biological Cybernetics

Université Nancy I

Tuebingen

Dominique Zelus

Wiener Lab, CIBIO

Rosario

http://www.loria.fr/~guermeur/

Overview

Guaranteed risk for multi-class discriminant models

- Statistical multi-class pattern recognition
- Margin-based bound on the risk : bi-class case
- Margin-based bound on the risk : multi-class case

M-fat-shattering dimension of M-SVMs

- Architecture and training algorithms of M-SVMs
- Capacity measure of M-SVMs and graph dimension of threshold MLPs
- Dependence of the capacity measure on the control term of the objective function

Multi-class pattern recognition

Hypotheses: empirical data characterizing a joint probability distribution

- Q-category discrimination problem
- Z = (X, Y): random variable on a probability space
- $X(\Omega) = \mathfrak{X}$: input space (set of descriptions), $Y(\Omega) = \mathfrak{Y}$: finite set of categories
- P: joint probability distribution function on $\mathfrak{X} \times \mathfrak{Y}$, fixed but unknown
- $s = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset (\mathfrak{X} \times \mathfrak{Y})^m$, learning set : observations i.i.d. according to P
- \mathcal{H} : family of vector-valued functions $h = [h_k], (1 \le k \le Q), \text{ from } \mathcal{X} \text{ into } \mathbb{R}^Q$

Goal: for a given pattern, find its category

Find in H a function associated with the lowest expected risk (generalization error)

$$R(h) = R(f) = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{\{f(x) \neq y\}} dP(x, y)$$

f: discriminant function corresponding to h, obtained by choosing the category associated with the index of the highest output

Empirical margin risk and uniform convergence result - the bi-class case

$$\mathcal{Y} = \{-1, 1\}$$

Definition 1 (Empirical margin risk (Bartlett 98)) Let h be a real-valued function on X. For a training data sequence $s_m = \{(x_1, y_1), \dots, (x_m, y_m)\}$ of length m and a real number $\gamma > 0$

$$R_{s_m}^{\gamma}(h) = \frac{1}{m} \left| \{ (x_i, y_i) \in s_m / y_i h(x_i) < \gamma \} \right|$$

For $\gamma \in (0,1]$, let $\pi_{\gamma} : \mathbb{R} \to [-\gamma, \gamma]$ be the piecewise-linear squashing function defined as

$$\pi_{\gamma}(x) = \begin{cases} \gamma.sign(x) & if |x| \ge \gamma \\ x & otherwise \end{cases}$$

Empirical margin risk and uniform convergence result - the bi-class case

Capacity measure: covering numbers

Fig. 1 – ϵ -net of a set \mathcal{G} in a pseudo-metric or Banach space

Definition 2 (Covering numbers)

 $\mathcal{N}(\epsilon, \mathcal{G}, \|.\|) = minimum \ number \ of \ balls \ of \ radius \ \epsilon \ required \ to \ cover \ the \ set \ \mathcal{G}$

Empirical margin risk and uniform convergence result - the bi-class case

Theorem 1 (Bartlett 98) Let s_m be a m-sample of examples drawn independently from P. With probability at least $1 - \delta$, for every value of γ in (0,1], the risk R(h) of a function h computed by a numerical bi-class discriminant model H is bounded above by :

$$R(h) \le R_{s_m}^{\gamma}(h) + \sqrt{\frac{2}{m} \left(\ln \left(2\mathcal{N}_{\infty}(\gamma/2, \mathcal{H}^{\gamma}, 2m) \right) + \ln \left(\frac{2}{\gamma \delta} \right) \right)}$$

where
$$\mathcal{H}^{\gamma} = \{ \pi_{\gamma} \circ h / h \in \mathcal{H} \}$$

$$\forall s_m \in \mathcal{X}^m, \ \forall (h^{(1)}, h^{(2)}) \in \mathcal{H}^2, \ d_{l_{\infty}(s_m)}(h^{(1)}, h^{(2)}) = \max_{x_i \in s_m} \left| h^{(1)}(x_i) - h^{(2)}(x_i) \right|$$

$$\mathcal{N}_{\infty}(\gamma/2, \mathcal{H}^{\gamma}, 2m) = \max_{s_{2m} \in \mathcal{X}^{2m}} \mathcal{N}(\gamma/2, \mathcal{H}^{\gamma}, d_{l_{\infty}(s_{2m})})$$

Empirical margin risk and uniform convergence result - the multi-class case

Definition 3 (Canonical function)

 $h = [h_k] : \mathcal{X} \longrightarrow \mathbb{R}^Q$

 $M_1(h,x)$: smallest index l such that $h_l(x) = \max_k h_k(x)$

 $M_2(h,x)$: smallest index $l \neq M_1(h,x)$ such that $h_l(x) = \max_{k \neq M_1(h,x)} h_k(x)$

 $\Delta h = [\Delta h_k], (1 \leq k \leq Q), function from X into \mathbb{R}^Q$ satisfying

$$\Delta h_k(x) = \begin{cases} \frac{1}{2} \left(h_k(x) - h_{M_2(h,x)}(x) \right) & \text{if } k = M_1(h,x) \\ \frac{1}{2} \left(h_k(x) - h_{M_1(h,x)}(x) \right) & \text{otherwise} \end{cases}$$

Definition 4 (Empirical margin risk (Elisseeff & al. 99)) The empirical risk with margin $\gamma \in (0,1]$ of h on a set $s_m = \{(x_1, C(x_1)), \dots, (x_m, C(x_m))\}$ of size m is

$$R_{s_m}^{\gamma}(h) = \frac{1}{m} \left| \left\{ (x_i, C(x_i)) \in s_m / \Delta h_{C(x_i)}(x_i) < \gamma \right\} \right|$$

Empirical margin risk and uniform convergence result - the multi-class case

Theorem 2 (Elisseeff & al. 99) Let s_m be a m-sample of examples drawn independently from P. With probability at least $1 - \delta$, for every value of γ in (0,1], the risk R(h) of a function h computed by a numerical Q-class discriminant model $\mathcal H$ is bounded above by:

$$R(h) \le R_{s_m}^{\gamma}(h) + \sqrt{\frac{1}{2m} \left(\ln\left(2\mathcal{N}_{\infty,\infty}(\gamma/2, \Delta\mathcal{H}^{\gamma}, 2m)\right) + \ln\left(\frac{2}{\gamma\delta}\right) \right)} + \frac{1}{m}$$

where
$$\Delta h^{\gamma} = [\pi_{\gamma} \circ \Delta h_k], (1 \leq k \leq Q), \Delta \mathcal{H}^{\gamma} = {\Delta h^{\gamma} / h \in \mathcal{H}}$$

$$\forall s_m \in \mathcal{X}^m, \ \forall (h^{(1)}, h^{(2)}) \in \mathcal{H}^2, \ d_{l_{\infty}, l_{\infty}(s_m)}(h^{(1)}, h^{(2)}) = \max_{x_i \in s_m} \max_{k \in \{1, \dots, Q\}} \left| h_k^{(1)}(x_i) - h_k^{(2)}(x_i) \right|$$

$$\mathcal{N}_{\infty,\infty}(\gamma/2,\Delta\mathcal{H}^{\gamma},2m) = \max_{s_{2m} \in \mathcal{X}^{2m}} \mathcal{N}(\gamma/2,\Delta\mathcal{H}^{\gamma},d_{l_{\infty},l_{\infty}(s_{2m})})$$

Bound on the covering numbers - bi-class case

Theorem 3 (Alon & al. 97) Let \mathcal{H} be a set of functions from \mathcal{X} into [0,1]. For every value of γ in (0,1] and every value of m in \mathbb{N}^* , the following bound is true :

$$\mathcal{N}_{\infty}(\gamma, \mathcal{H}, m) \le 2\left(\frac{4m}{\gamma^2}\right)^{d \log_2(2em/(d\gamma))}$$

where $d = fat_{\mathcal{H}}(\gamma/4)$.

Extended notions of VC dimension

Definition 5 (Fat-shattering dimension (Kearns & Schapire 90)) Let \mathcal{H} be a set of real-valued functions on a set \mathcal{X} . For $\gamma > 0$, a subset $s_m = \{x_i\}$, $(1 \le i \le m)$ of \mathcal{X} is said to be γ -shattered by \mathcal{H} if there is a vector $v_b = [b_i] \in \mathbb{R}^m$ such that, for each binary vector $v_y = [y_i] \in \{-1,1\}^m$, there is a function $h_y \in \mathcal{H}$ satisfying

$$(h_y(x_i) - b_i) y_i \ge \gamma, \ (1 \le i \le m)$$

The vector v_b is then said to witness the γ -shattering of s_m by \mathcal{H} . The fat-shattering dimension $fat_{\mathcal{H}}$ of the set \mathcal{H} is a function from the positive real numbers to the integers which maps a value γ to the size of the largest set γ -shattered by functions of \mathcal{H} , if this size is finite, or to infinity otherwise.

Definition 6 (Graph dimension (Dudley 87, Natarajan 89)) Let \mathcal{H} be a set of functions on a set \mathcal{X} taking their values in a countable set. For any $h \in \mathcal{H}$, the graph \mathcal{G} of h is $\mathcal{G}(h) = \{(x, h(x)) \mid x \in \mathcal{X}\}$ and the graph space of \mathcal{H} is $\mathcal{G}(\mathcal{H}) = \{\mathcal{G}(h) \mid h \in \mathcal{H}\}$. Then the graph dimension of \mathcal{H} is defined to be the VC dimension of the space $\mathcal{G}(\mathcal{H})$.

M-fat-shattering dimension

Definition 7 (M-fat-shattering dimension (Guermeur & al. 02)) Let \mathcal{H} be a set of functions on a set \mathcal{X} taking their values in \mathbb{R}^Q . For $\gamma > 0$, a subset $s_m = \{x_i\}$, $(1 \le i \le m)$ of \mathcal{X} is said to be M- γ -shattered by \mathcal{H} if there is a vector $v_b = [b_i] \in \mathbb{R}^m$ and a vector $v_c = [c_i] \in \{1, \ldots, Q\}^m$ such that, for each binary vector $v_y = [y_i] \in \{-1, 1\}^m$, there is a function $h_y = [h_{yk}]$, $(1 \le k \le Q) \in \mathcal{H}$ satisfying

$$(h_{yc_i}(x_i) - b_i) y_i \ge \gamma, \ (1 \le i \le m)$$

The couple (v_b, v_c) is then said to witness the M- γ -shattering of s_m by \mathcal{H} . The M-fat-shattering dimension M-fat $_{\mathcal{H}}$ of the set \mathcal{H} is a function from the positive real numbers to the integers which maps a value γ to the size of the largest set M- γ -shattered by functions of \mathcal{H} , if this size is finite, or to infinity otherwise.

M-fat-shattering dimension: extension of the fat-shattering dimension to the multivariate case and scale-sensitive version of the graph dimension

Bound on the covering numbers - multi-class case

Theorem 4 (Guermeur & al. 02) Let \mathcal{H} be a set of functions from \mathcal{X} into \mathbb{R}^Q . For every value of γ in (0,1] and every value of m in \mathbb{N}^* , the following bound is true:

$$\mathcal{N}_{\infty,\infty}(\gamma/2,\Delta\mathcal{H}^{\gamma},2m) \leq 2\left(2mQ9^{Q}\right)^{d\log_{2}(18emQ/d)}$$

where $d = M - fat_{\Delta \mathcal{H}^{\gamma}}(\gamma/8)$.

Multi-class Support Vector Machines

Architecture

The functions $h = [h_k]$ of the family \mathcal{H} considered are defined by :

$$\forall k \in \{1, \dots, Q\}, \ h_k(x) = w_k^T \Phi(x) + b_k$$

 Φ is a nonlinear map into the feature space

Training algorithm

Let K be the kernel associated with Φ :

$$\forall (x^{(1)}, x^{(2)}) \in \mathcal{X}^2, \ K(x^{(1)}, x^{(2)}) = \langle \Phi(x^{(1)}), \Phi(x^{(2)}) \rangle$$

and let $s_m = \{(x_1, C(x_1)), \dots, (x_m, C(x_m))\}$ be the training set

In its dual formulation, training consists in finding the values of the coefficients β_{ik} in :

$$\forall k \in \{1, \dots, Q\}, \ h_k(x) = \sum_{i=1}^m \beta_{ik} K(x_i, x) + b_k$$

Training algorithms of M-SVMs (primal formulation)

Problem 1 (M-SVM1 (Vapnik & Blanz 98, Weston & Watkins 98))

$$\min_{h \in \mathcal{H}} \left\{ \frac{1}{2} \sum_{k=1}^{Q} \|w_k\|^2 + C \sum_{i=1}^{m} \sum_{k=1}^{Q} \xi_{ik} \right\}$$

s.t.
$$\begin{cases} (w_{C(x_i)} - w_k)^T x_i + b_{C(x_i)} - b_k \ge 1 - \xi_{ik}, & (1 \le i \le m), (1 \le k \ne C(x_i) \le Q) \\ \xi_{ik} \ge 0, & (1 \le i \le m), (1 \le k \ne C(x_i) \le Q) \end{cases}$$

Problem 2 (M-SVM2 (Guermeur 02))

$$\min_{h \in \mathcal{H}} \left\{ \frac{1}{2}t^2 + C \sum_{i=1}^{m} \sum_{k=1}^{Q} \xi_{ik} \right\}$$

s.t.
$$\begin{cases} ||w_k - w_l||^2 \le t^2, & (1 \le k < l \le Q) \\ Contraints & of Problem 1 \end{cases}$$

M-fat-shattering dimension of M-SVMs and graph dimension of a MLP

Fig. 2 – MLP computing the same discriminant functions as the M-SVMs $t_h(z) = 1$ if $z \ge \epsilon$, $t_h(z) = -1$ if $z \le -\epsilon$ and $t_h(z) = 0$ otherwise $h_{k,l}(\Phi(x)) = t_h(1/2(w_k - w_l)^T \Phi(x) + b_{k,l}), (1 \le k < l \le Q)$

M-fat-shattering dimension of M-SVMs and graph dimension of a MLP

Definition 8 (uniform M-fat-shattering dimension) Let \mathcal{H} be a set of functions on a set \mathcal{X} taking their values in \mathbb{R}^Q . For $\gamma > 0$, the uniform M-fat-shattering dimension UM-fat $_{\mathcal{H}}$ of \mathcal{H} is simply M-fat $_{\mathcal{H}}$ in the case where the components of vector v_b are constrained to take only Q different values, one for each category. In other words, if two components of the vector v_c are equal, then the corresponding components of the vector v_b are also equal.

Pathway linking the capacity measures of the two models

- (1) M-fat_{M-SVM} $(\epsilon) \leq K_{\gamma,\epsilon} \text{ UM-fat}_{M-SVM}(\epsilon/2)$
- (2) The MLP must be adapted to output a category different from $C(x_i)$ when $y_i = -1$
- (3) UM-fat_{M-SVM} (ϵ) is inferior or equal to the graph dimension of the MLP

Graph dimension of the MLP

- (1) The growth function Π_{MLP} of the MLP is inferior or equal to the product of the growth functions of each hidden unit (Baum & Haussler 89)
- (2) The growth function of each hidden unit can be bounded in terms of the corresponding fat-shattering dimension d_{ϵ} (Vapnik-Chervonenkis-Sauer-Shela lemma)

(3)

$$\Pi_{MLP}(m) < \left(\frac{em}{d_{\epsilon}}\right)^{1/2Q(Q-1)d_{\epsilon}}$$

(4)

$$d_{graph}(MLP) < Q(Q-1)\log_2\left[eQ(Q-1)\right]d_{\epsilon}$$

__

The fat-shattering dimension of linear classifiers appears to be the central parameter to study

Fat-shattering dimension of hyperplanes and objective functions of M-SVMs

Theorem 5 (Bartlett & Shawe-Taylor 99) Suppose that X is the ball of radius Λ_X in a Hilbert space E_X and consider the set \mathcal{H} of linear functions h such that $h(x) = w^T x$ with $||w|| \leq \Lambda_w$. Then, for all $\epsilon > 0$,

$$fat_{\mathcal{H}}(\epsilon) \le \left(\frac{\Lambda_{\mathcal{X}}\Lambda_w}{\epsilon}\right)^2$$

Remarks

- $E_{\mathcal{X}}$ can be an infinite dimensional space
- The model is affine (not linear) \Longrightarrow additional multiplicative coefficient

 \Longrightarrow

Possible control terms

- $-\sum_{k< l}^{Q} \|w_k w_l\|^2,$
- $\max_{k < l} ||w_k w_l||^2$,

- . . .

Objective functions of standard M-SVMs

Multi-class SVM	Objective function	Add. const.
Vapnik & Blanz 98	$J_1(w, b, \xi) = \sum_{k=1}^{Q} w_k ^2 + C_1 1^T \xi$	-
Weston & Watkins 98	$J_1(w, b, \xi) = \sum_{k=1}^{Q} w_k ^2 + C_1 1^T \xi$	-
Bredensteiner & al. 99	$J_2(w, b, \xi) = \sum_{k < l}^{Q} w_k - w_l ^2 + \sum_{k = 1}^{Q} w_k ^2 + C_2 1^T \xi$	-
Guermeur & al. 00	$J_3(w, b, \xi) = \sum_{k < l}^{Q} w_k - w_l ^2 + C_3 1^T \xi$	$\sum_{k=1}^{Q} w_k = 0_d$

Objective function	Add. const.	С	Solution
$J_1(w,b,\xi)$	-	C_1	$\left(w^{(1)}, b^{(1)}, \xi^{(1)}, \alpha^{(1)}, \beta^{(1)}\right)$
$J_2(w,b,\xi)$	-	$(Q+1)C_1$	$\left(w^{(1)}, b^{(1)}, \xi^{(1)}, (Q+1)\alpha^{(1)}, (Q+1)\beta^{(1)}\right)$
$J_3(w,b,\xi)$	$\sum_{k=1}^{Q} w_k = 0_d$	QC_1	$\left(w^{(1)}, b^{(1)}, \xi^{(1)}, Q\alpha^{(1)}, Q\beta^{(1)}, 0_d\right)$

The same set of primal variables generates solutions for the three problems \Longrightarrow All these multi-class SVMs are equivalent

Conclusions and future work

Conclusions

- New pathway to bound the generalization performance of multi-class discriminant models
- New justification of the control terms used for the M-SVMs
- Possibility to develop new machines

Future work

- Comparison with the direct approach involving the entropy numbers of a linear operator (Williamson & al. 01)
- Comparison with works involving data dependent capacity measures (Boucheron & al. 99, Bartlett & al. 02, Bousquet 02)
- Design of optimization methods devoted to the new machines