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Overview

Guaranteed risk for multi-class discriminant models

e Statistical multi-class pattern recognition
e Margin-based bound on the risk : bi-class case
e Margin-based bound on the risk : multi-class case

M-fat-shattering dimension of M-SV Ms

e Architecture and training algorithms of M-SV Ms
e Capacity measure of M-SVMs and graph dimension of threshold MLPs
e Dependence of the capacity measure on the control term of the objective function
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Multi-class pattern recognition

Hypotheses : empirical data characterizing a joint probability distribution

e ()-category discrimination problem

- Z = (X,Y) : random variable on a probability space

- X(©2) = X : input space (set of descriptions), Y (2) =Y : finite set of categories

- P : joint probability distribution function on X x Y, fixed but unknown

- s={(x1,y1)s -, (T, Ym)} C (X x Y)™, learning set : observations i.i.d. according to P
e J : family of vector-valued functions h = [h;], (1 < k < Q), from X into R%

Goal : for a given pattern, find its category

Find in H a function associated with the lowest expected risk (generalization error)

R(h) = R(f) = /:x . g f ()21 dP (2, y)

f : discriminant function corresponding to h, obtained by choosing the category
associated with the index of the highest output
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Empirical margin risk and uniform convergence result - the bi-class case

9= {_17 1}

Definition 1 (Empirical margin risk (Bartlett 98)) Let h be a real-valued function

on X. For a training data sequence S, = {(x1,91),-- -, (Tm,Ym)} of length m and a real
number v > 0

RY,(0) = = (o) € s / wih(s) <)

For v € (0,1], let my : R = [—7, ] be the piecewise-linear squashing function defined as

v.sign(z) if |z] >

€T otherwise

Ty (T) =
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Empirical margin risk and uniform convergence result - the bi-class case

Capacity measure : covering numbers

F1G. 1 — e-net of a set G in a pseudo-metric or Banach space

Definition 2 (Covering numbers)

N(e, G, ||.|) = minimum number of balls of radius € required to cover the set G

Y. Guermeur e



November 14, 2002 Bound on the Risk for M-SV Ms

Empirical margin risk and uniform convergence result - the bi-class case

Theorem 1 (Bartlett 98) Let s, be a m-sample of examples drawn independently from
P. With probability at least 1 — 9, for every value of v in (0, 1], the risk R(h) of a function
h computed by a numerical bi-class discriminant model 3 is bounded above by :

R(h) < R} (h)+ \/3 (ln (2N oo (7/2, H7,2m)) + In (3))

m Y0

where HY = {m,oh / h € H}

Vsm € X™, V(W h®) € 72, dy_(,, (B, h?) = max ‘h(l)(xi) - h<2>(x,-)‘

T;ESm

Noo(7/2,H7,2m) = max  N(v/2,H7,d;_(s,,,))

Som G:X:Qm
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Empirical margin risk and uniform convergence result - the multi-class case

Definition 3 (Canonical function)
h = [hk] : X — RQ

M;i(h,x) : smallest index | such that hi(x) = maxy hi(x)
M;(h,x) : smallest index | # My (h,x) such that hi(x) = maxy£r, (h,z) i ()
Ah = [Ahi], 1 <k <Q), function from X into RQ satisfying

(hk(a:) — hM2(h’$)(£U)) ka = Ml(h, :U)

Ahk(a:) ==
(hi(x) — hagy (hoy (@) otherwise

N|— N

Definition 4 (Empirical margin risk (Elisseeff & al. 99)) The empirical risk with
margin v € (0,1] of h on a set s, = {(x1,C(x1)), ..., (T, C(xm))} of size m is

B) = — {20, C(@1)) € s | Ahogey () <7}
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Empirical margin risk and uniform convergence result - the multi-class case

Theorem 2 (Elisseeff & al. 99) Let s, be a m-sample of examples drawn
independently from P. With probability at least 1 — &, for every value of v in (0, 1], the

risk R(h) of a function h computed by a numerical Q-class discriminant model H is
bounded above by :

R(h) < R] (h)+ \/i (m (2N o000 (7/2, AHY,2m)) + In (3)) 1L

2m Y0 m

where ARY = [m, 0 Ahg], (1 <k <Q), AHY ={ARY / h € H}

m (1) (2)
Vsm € X, V(D ) € 9, di 1o, (AP = max max  |nf @) — 1 ()

Noo,oo (7/2, AH7,2m) = max  N(v/2, AH7,d;_ 1. (som))

S2m, Eme

Y. Guermeur @



November 14, 2002 Bound on the Risk for M-SV Ms

Bound on the covering numbers - bi-class case

Theorem 3 (Alon & al. 97) Let H be a set of functions from X into [0,1]. For every

value of v in (0,1] and every value of m in N*, the following bound is true :
dlog,(2em/(dv))
4 2
N3 <2 (27
~

where d = faty (v/4).
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Extended notions of VC dimension

Definition 5 (Fat-shattering dimension (Kearns & Schapire 90)) Let H be a set
of real-valued functions on a set X. For v > 0, a subset s, = {x;}, (1 <1 <m) of X is
said to be y-shattered by H if there is a vector vy, = [b;] € R™ such that, for each binary
vector vy, = [y;] € {—1,1}", there is a function h, € H satisfying

(hy(wi) = bi) yi >, (L <i<m)

The vector vy is then said to witness the ~y-shattering of s,, by H. The fat-shattering
dimension fatq; of the set H is a function from the positive real numbers to the integers
which maps a value v to the size of the largest set yv-shattered by functions of H, if this
size 1s finite, or to infinity otherwise.

Definition 6 (Graph dimension (Dudley 87, Natarajan 89)) Let H be a set of
functions on a set X taking their values in a countable set. For any h € H, the graph G of

h is G(h) = {(x,h(z)) / x € X} and the graph space of H is G(H) ={G(h) / h € H}.
Then the graph dimension of H is defined to be the VC dimension of the space G(IH).
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M-fat-shattering dimension

Definition 7 (M-fat-shattering dimension (Guermeur & al. 02)) Let H be a set
of functions on a set X taking their values in RQ. For v > 0, a subset s,, = {x;},

(1 <i<m) of X is said to be M--shattered by H if there is a vector vy, = [b;] € R™ and
a vector v, = [¢;] € {1,...,Q}" such that, for each binary vector v, = [y;] € {-1,1}",
there is a function hy = [hyk], (1 <k < Q) € I satisfying

(hye; (w3) = bi) yi >y, (1 <i<m)

The couple (vp,v.) is then said to witness the M -vy-shattering of sy, by H. The
M-fat-shattering dimension M-fatqy, of the set H is a function from the positive real
numbers to the integers which maps a value v to the size of the largest set M-v-shattered
by functions of H, if this size is finite, or to infinity otherwise.

M-fat-shattering dimension : extension of the fat-shattering dimension to the
multivariate case and scale-sensitive version of the graph dimension
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Bound on the covering numbers - multi-class case

Theorem 4 (Guermeur & al. 02) Let 3 be a set of functions from X into R?. For

every value of v in (0,1] and every value of m in N* | the following bound is true :

Noo,00(7/2, AHT,2m) < 2 (zngQ)dlog2(18emQ/d)

where d = M-fatxqc-(7/8).
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Multi-class Support Vector Machines

Architecture

The functions h = [hy] of the family H considered are defined by :
® is a nonlinear map into the feature space

Training algorithm
Let K be the kernel associated with @ :

V(zW, 2@ e X2, K(zW,2®) = (3(zV)), ®(2?))
and let s, = {(z1,C(x1)),...,(xm,C(xy))} be the training set

In its dual formulation, training consists in finding the values of the coefficients (3,5 in :

Vk e {1,...,Q}, hp(z Zﬁsz%, ) + by,

Y. Guermeur ®
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Training algorithms of M-SVMs (primal formulation)

Problem 1 (M-SVM1 (Vapnik & Blanz 98, Weston & Watkins 98))

Q m  Q

1=1 k=1

5.1, € > 0. 1<i<m),1<k#C(z) <

Problem 2 (M-SVM2 (Guermeur 02))

m Q
}ﬁ%iﬁ{%t2+czz&k}

1=1 k=1

Jwr, —wi||* <, (1<k<I<Q)

Contraints of Problem 1

s.t.
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M-fat-shattering dimension of M-SV Ms and graph dimension of a MLP

Definition 8 (uniform M-fat-shattering dimension) Let H be a set of functions on
a set X taking their values in R?. For v > 0, the uniform M-fat-shattering dimension
UM-fats; of H is simply M-fats in the case where the components of vector vy are
constrained to take only ) different values, one for each category. In other words, if two

components of the vector v. are equal, then the correponding components of the vector vy
are also equal.

Pathway linking the capacity measures of the two models

(1) M—fatM_SVM(E) < K%e UM_fatM—SVM(E/z)
(2) The MLP must be adapted to output a category different from C(x;) when y; = —1
(3) UM-fatyj_qyp(€) is inferior or equal to the graph dimension of the MLP
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Graph dimension of the MLP

(1) The growth function Iy, p of the MLP is inferior or equal to the product of the
growth functions of each hidden unit (Baum & Haussler 89)

(2) The growth function of each hidden unit can be bounded in terms of the
corresponding fat-shattering dimension d. (Vapnik-Chervonenkis-Sauer-Shela lemma)

(3)

em
de

1/2Q(Q—1)d.
HMLp(m) < ( >

(4)
dgraph(MLP) < Q(Q — 1) log, [eQ(Q — 1)] d.

The fat-shattering dimension of linear classifiers appears to be the central

parameter to study
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Fat-shattering dimension of hyperplanes and objective functions of M-SV Ms

Theorem 5 (Bartlett & Shawe-Taylor 99) Suppose that X is the ball of radius A in

a Hilbert space Ex and consider the set 3 of linear functions h such that h(z) = wlz

with ||w|| < Ay. Then, for all € > 0,

Awa>2

€

futsle) <

Remarks
- Ex can be an infinite dimensional space
- The model is affine (not linear) = additional multiplicative coefficient

—

Possible control terms

- S ok — w1,
- MaXg< H’wk - leQ,
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Objective functions of standard M-SV Ms

Multi-class SVM Objective function Add. const.
Vapnik & Blanz 98 Ji(w,b,8) = 39 |Jwi|]* + C117¢ -
Weston & Watkins 98 Ji(w,b,6) = 3% |lwg||* + C117¢ -
Bredensteiner & al. 99 | Ja(w, b, &) = ng lwy, — wy||* + 222:1 |lwg || + Ca1T'¢ -
Guermeur & al. 00 J3(w, b,&) = ng lwi, — wl||2 + C317¢ Zgzl wi = 04
Objective function Add. const. C Solution
Ji(w, b, €) _ o (wu), p(1) ¢ au),ﬁ(u)
Ja(w,b,€) : (Q+1)C1 | (w60 ,6M,(Q+ 1o, (Q+1)8V)
Js(w, b, €) 2wy =04 QC: (wu), b ¢ 0a™ QW Od)

The same set of primal variables generates solutions for the three problems
—> All these multi-class SVMs are equivalent
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Conclusions and future work

Conclusions

e New pathway to bound the generalization performance of multi-class discriminant
models
e New justification of the control terms used for the M-SVMs

e Possibility to develop new machines

Future work

e Comparison with the direct approach involving the entropy numbers of a linear operator
(Williamson & al. 01)
e Comparison with works involving data dependent capacity measures

(Boucheron & al. 99, Bartlett & al. 02, Bousquet 02)
e Design of optimization methods devoted to the new machines
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