# Learning *Very* Large Data Sets

# Apprentissage pour *Très* Grands Echantillons

Léon Bottou & Yann Le Cun

NEC Research Institute,

4 Independence Way,

Princeton NJ 08540, USA

Email: {leonb,yann}@research.nj.nec.com

## Large Learning System

#### **Example:**

• Computer monitors radio broadcasts for a few months and learns how to recognize speech.

#### **Obstacles**

- Statement: statistics, statistic learning theory, . . .
- Engineering: http://lush.sourceforge.net.
- Algorithms: learning algorithms do not scale well enough!

## Learning algorithms do not scale well enough

Comparing computers in 1992 and 2002:

- Speed multiplied by 100
- Disk storage multiplied by 500+

Comparing large learning systems in 1992 and 2002:

- From  $10^5$  to  $10^6$  examples,
- From 10<sup>5</sup> to 10<sup>6</sup> parameters,

Very computer intensive attempts to improve upon these numbers (Bengio & Ducharme, 2001)

SVMs are not running in this race. Boosting does (Drucker, 1993)

## Online algorithms

Large data sets are best handled by online algorithms.

- 1994 Bottou, Cortes & al MNIST experiments.
- 1998 LeCun, Bottou, Bengio, Haffner Gradient-based Learning for Document Recognition.
- 1998 LeCun, Bottou, Müller, Orr Efficient learning.

How fast can online algorithms be?

## Previous work

Comparing online and batch learning algorithms:

- 1970 Tsypkin & others Optimal (online) learning systems.
- 1997 Saad, Solla, Caticha –
  Optimal online algorithms in statistical physics
  (teacher network / student network).
- 1997 Murata, Amari —
  Natural Gradient achieves Cramer-Rao bound
  ( maximum likelihood )

## Our contribution

- A simple and general statement on the relative speed of online and batch learning algorithms.
- Answers about the scaling laws of learning algorithms.

## Cost functions

• Many cost functions are sums/averages of many terms.

$$C_L(\theta) = \frac{1}{L} \sum_{i=1}^{L} L(z_i, \theta)$$

- ullet There are typically as many terms as examples  $z_i$ .
- $L(z,\theta)$  is known as the Loss function.  $J(z,\theta) = \tfrac{\partial}{\partial \theta} L(z,\theta) \text{ is known as the Jacobian.}$

## Batch Learning

• Generic form of a batch learning algorithm:

$$heta(t) = heta(t-1) - \Phi_t rac{1}{L} \sum_{i=1}^{L} J(z_i, heta(t-1))$$

Each iteration involves a loop over all the terms.

All examples must be stored in memory beforehand.

• Superlinear convergence is achieved when the rescaling matrix  $\Phi_t$  is well chosen.

$$(\theta(t) - \theta_L^*)^2 = \mathcal{O}\left(\frac{1}{e^{e^t}}\right)$$

# Online Learning (1)

- ullet Idea: Only use one random example  $Z_t$  per iteration.
- Generic form of an online learning algorithm:

$$\theta(t) = \theta(t-1) - \Phi_t \frac{1}{t} J(Z_t, \theta(t-1))$$

- No need to store examples beforehand.
- Converges almost surely to a local minimum.
- Note the *learning rate* 1/t.

# Online Learning (2)

Residual noise depends on learning rate.



Learning rate cannot decrease too fast. Optimal schedule is 1/t.

- Consequence:  $(\theta(t) \theta^*)^2 = \mathcal{O}\left(\frac{1}{t}\right)$  at best!.
- Online learning seems hopelessly slow ... but ...

# Generalization (1)

Empirical error (i.e. training error)

$$C_L(\theta) = \frac{1}{L} \sum_{i=1}^{L} L(z_i, \theta)$$

Expected error (i.e. generalization error)

$$C_{\infty}(\theta) = \mathbf{E}(L(Z,\theta)) = \int L(Z,\theta) dp(Z)$$

- Batch learning converges *quickly* to the optimum  $\theta_L^*$  of the empirical error.
- Online learning converges to the optimum  $\theta^*$  of the expected error.

# Generalization (2)



# Dynamics of the empirical optimum $heta_L^*$



Simple expansion shows

$$\theta_L^* = \theta_{L-1}^* - \Psi_L \frac{1}{L} J(Z_L, \theta_{L-1}^*) + \mathcal{O}\left(\frac{1}{L^2}\right)$$

where  $\Psi_L$  converges to the inverse Hessian matrix

$$\Psi_L \longrightarrow H^{-1}$$
 with  $H = \mathbf{E} \left( \frac{\partial^2}{\partial \theta^2} C(\theta^*) \right)$ 

## Compare...

• Convergence of the empirical optimum:

$$\theta_L^* = \theta_{L-1}^* - \Psi_L \frac{1}{L} J(Z_L, \theta_{L-1}^*) + \mathcal{O}\left(\frac{1}{L^2}\right)$$

• Online learning:

$$\theta(t) = \theta(t-1) - \Phi_t \frac{1}{t} J(Z_t, \theta(t-1))$$

Same thing?

### Theorem

We consider the process

$$\theta_t = \theta_{t-1} - \Phi_t \frac{1}{L} J(Z_t, \theta_{t-1}) + \mathcal{O}\left(\frac{1}{t^2}\right)$$

with  $\mathbf{E}(||\Phi_t - H^{-1}||) \to 0$  and many mild assumptions.

Then

$$\mathbf{E}\left((\theta_t - \theta^*)^2\right) = \frac{K}{t} + o\left(\frac{1}{t}\right)$$

Remark: the constant K does not depend on the details.

$$K = \operatorname{tr}\left(H^{-1}\mathbf{E}\left(J(Z,\theta^*)J'(Z,\theta^*)\right)H^{-1}\right)$$

# Corollary



## Special Case: Maximum Likelihood

• Log loss  $L(z,\theta) = -\log \phi_{\theta}(z)$ 

• Hessian H equals Fisher information matrix  $\mathcal{I}(\theta^*)$ .

We reach Cramer-Rao efficiency as soon as  $\Phi_t \to \mathcal{I}^{-1}(\theta^*)$ .

#### Example:

Natural Gradient achieves Cramer-Rao bound. (Murata & Amari, 1998)

# Conclusion (1)

A batch algorithm that optimizes the cost function faster than an efficient online algorithm...

... is just overfitting!

# Conclusion (2)

We have a very large number of examples at hand. Should we:

- 1. run an efficient online algorithm and process as many examples as we can?
- 2. run a superlinear batch algorithm on the largest set of examples we can process in the same time.

Answer: 1

# Conclusion (3)

Learning N examples.

Fixed capacity.

|                           | Memory                           | CPU                                  |
|---------------------------|----------------------------------|--------------------------------------|
| Efficient online learning | 0 (1)                            | $\mathcal{O}\left(N\right)$          |
| Superlinear batch         | $\mathcal{O}\left(N ight)$       | $\mathcal{O}\left(N\log\log N ight)$ |
| SVM (!)                   | $\mathcal{O}\left(N^{2?}\right)$ | $\mathcal{O}\left(N^{3?}\right)$     |

### Future work

#### Assumption

$$\mathbf{E}(||\Phi_t - H^{-1}||) \to 0$$

means that  $\Phi_t$  is a full rank matrix.

We do not want to handle this.

- Find a way to use reduced rank approximations.
- ullet Find a way to make the Hessian H block-diagonal.