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lLLarge Learning System

Example:

e Computer monitors radio broadcasts for a few months
and learns how to recognize speech.

Obstacles

- Statement: statistics, statistic learning theory,. ..
- Engineering: http://lush.sourceforge.net.
- Algorithms: learning algorithms do not scale well enough!



LLearning algorithms do not scale well enough

Comparing computers in 1992 and 2002:
- Speed multiplied by 100
- Disk storage multiplied by 500+

Comparing large learning systems in 1992 and 2002:
- From 10°® to 10% examples,
- From 10° to 10° parameters,

Very computer intensive attempts to improve upon these
numbers (Bengio & Ducharme, 2001)

SVMs are not running in this race.
Boosting does (Drucker, 1993)



Online algorithms

LLarge data sets are best handled by online algorithms.

1994 Bottou, Cortes & al —
MNIST experiments.

1998 LeCun, Bottou, Bengio, Haffner —
Gradient-based Learning for Document Recognition.

1998 LeCun, Bottou, Muller, Orr —
Efficient learning.

How fast can online algorithms be?



Previous work

Comparing online and batch learning algorithms:

1970 Tsypkin & others —
Optimal (online) learning systems.

1997 Saad, Solla, Caticha —
Optimal online algorithms in statistical physics
( teacher network / student network ).

1997 Murata, Amari —

Natural Gradient achieves Cramer-Rao bound
( maximum likelihood )



Our contribution

e A simple and general statement on the relative speed
of online and batch learning algorithms.

e Answers about the scaling laws of learning algorithms.



Cost functions

e Many cost functions are sums/averages of many terms.
1 L

Cr(0) = 17 > L(z,0)

=1

e [ here are typically as many terms as examples z,.

e L(z,0) is known as the Loss function.

J(2,60) = ZL(z,0) is known as the Jacobian.



Batch Learning

e Generic form of a batch learning algorithm:

L
0() = 6(t — 1) — D 3 J(z1,0(6 — 1)
=1

Each iteration involves a loop over all the terms.
All examples must be stored in memory beforehand.

e Superlinear convergence is achieved when the
rescaling matrix ®; is well chosen.

(0@ - 07)% =0 ()
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Online Learning (1)
e Idea: Only use one random example Z; per iteration.

e Generic form of an online learning algorithm:

o(t) = 0(t — 1) — CD,%J(Zt, ot — 1))

e No need to store examples beforehand.
e Converges almost surely to a local minimum.

e Note the learning rate 1/t.



Online Learning (2)

e Residual noise depends on learning rate.

Total Gradient

radients

Learning rate cannot decrease too fast.
Optimal schedule is 1/t.

e Consequence: (0(t) —6%)2 =0 (%) at bestl!.

e Online learning seems hopelessly slow ... but ...



Generalization (1)

e Empirical error (i.e. training error)
L

CL®) = > L(21,0)

=1

Expected error (i.e. generalization error)

Coo(8) = E (L(Z,0)) = [ L(Z,6) dp(2)

e Batch learning converges quickly to the
optimum 67 of the empirical error.

e Online learning converges to the
optimum 6* of the expected error.
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Generalization (2)

Online learning

_-_TTS

Batch learning
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Dynamics of the empirical optimum 67

)

lcy (0, [ azg, 6

e Simple expansion shows

1
0r, =07 1 -V, L (7, 0% 1)+0< )

12
where Wy converges to the inverse Hessian matrix
1 82
V; — H - with H=E C(6*
L (802 ( ))
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Compare. ..

e Convergence of the empirical optimum:

1
01 = 01— Vi (21,85 + O

e Online learning:

0(t) = 0(t — 1) — CD,%J(Zt, ot — 1))

Same thing?

2)
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T heorem

We consider the process

1 1
0p =011 — 1 (Z,0-1) + O ()
with E (||®; — H~1||) — 0 and many mild assumptions.

Then
B ((6:— 62) == +o <3)

Remark: the constant K does not depend on the details.

K =t (1B (3(2.02.0%) 1)
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Corollary

Online learning
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Same speed O(1/1)
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Special Case: Maximum Likelihood
e Log loss L(z,0) = — 109 ¢p(z)
e Hessian H equals Fisher information matrix Z(6%).

We reach Cramer-Rao efficiency as soon as &; — Z—1(6*).

Example:

Natural Gradient achieves Cramer-Rao bound.
(Murata & Amari, 1998)
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Conclusion (1)

A batch algorithm that optimizes the cost function faster
than an efficient online algorithm. ..

IS just overfitting !
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Conclusion (2)

We have a very large number of examples at hand.
Should we:

1. run an efficient online algorithm and process as many
examples as we can?

2. run a superlinear batch algorithm on the largest set of
examples we can process in the same time.

Answer: 1
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Conclusion (3)

Learning N examples.
Fixed capacity.

Memory CPU
Efficient online learning | O (1) O (N)
Superlinear batch O(N) | O(NloglogN)

SVM (1)

o (N?7)

O (N%7)
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Future work

Assumption
E(||®— H 1)) =0

means that &, is a full rank matrix.

We do not want to handle this.
e Find a way to use reduced rank approximations.

e Find a way to make the Hessian H block-diagonal.
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