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Abstract. In this paper, we propose a new spatio-temporal descriptor
called ST-SURF. The latter is based on a novel combination between
the speed up robust feature and the optical flow. The Hessian detector
is employed to find all interest points. To reduce the computation time,
we propose a new methodology for video segmentation, in Frames Pack-
ets FPs, based on the interest points trajectory tracking. We consider
only moving interest points descriptors to generate robust and powerful
discriminative codebook based on K-mean clustering. We use a standard
bag-of-visual-words SVM approach for action recognition. For the pur-
pose of evaluation, the experimentations are carried out on KTH and
UCF sports Datasets. It is demonstrated that the designed ST-SURF
shows promising results. In fact, on KTH Dataset, the proposed method
achieves an accuracy of 88.2% which is equivalent to the state-of-the-art.
On the more realistic UCF sports Dataset, our method surpasses the per-
formance of the best results of space-time descriptors/Hessian detector
with 80.7%.

Keywords: Action recognition, SURF, optical flow, spatio-tempral fea-
ture, group of interst points, frames packets.

1 Introduction

In user-generated video footage, the quantity of video data containing human
actions and scenes is growing exponentially (about 48 hours of video uploaded
per minute on YouTubeTM) [1]. With this growth the demand for action and
scene recognition or content-based video data retrieval is, certainly, colossal.
Usually, considerable events are characterized by actions, for example, boxing,
kissing, or some stealthy actions or behavior in a surveillance video, examples of
which are shown in Fig. 1.

Recognizing human actions from videos is receiving increasing attention due
to its wide range of applications such as video indexing and retrieval [2], human-
computer interaction, digital entertainment, surveillance videos [3] etc. However,
action recognition is usually confronted to many issues, including the necessity
of handling considerable occlusions, scale changes, illumination, and the exis-
tence of background clutter, as well as viewpoint changes. In the context of
action recognition in video, the representation of video objects as a bag of vi-
sual words through a histogram has become a very active research field [4]. This



Fig. 1: Samples representing three classes of human actions: boxing, kissing and
running

histogram can be used in classifier framework to make the difference between
object’s classes. However, the main weakness of a given bag of visual words
is that, not all words will be informative, accurate and objective in terms of
describing actions. Consequently, the selection of the most informative words
is required. The most used methods to select visual words are using Machine
learning techniques Boosting [5] or adaptation process such as Multiple Instance
Learning (MIL) [6] or many other State-of-the-art algorithms [7], [8]. As long
as these approaches proved significant results for action recognition, they need
to be adapted to be applied into the temporal domain, for action recognition
or data retrieval. Recent studies in both the spatial [9] and temporal [10] do-
mains explore the descriptive and discriminative performances of these features.
In particular, spatio-temporal local features have been widely studied as image
features to detect human actions, objects and events in videos. Although, video
analysis with spatio-temporal features is not new, but has not been much ex-
plored yet. To extract spatio-temporal features, one of the most used methods is
local cuboid. Dollar et al. [11] and Laptev et al. [12] extract Histogram of Gradi-
ent (HoG) and Histogram of Flow (HoF) from a cuboid, respectively. Although,
extracting such features from a whole cuboid is not robust to noise. It is also
touchy task to decide the cuboid size, and require important computational de-
mands. In this context, we propose in this paper a novel spatio-temporal feature
based on the SURF [13] local descriptor. The proposed method is based on de-
tecting spatio-temporal interest points. We extract the descriptor by extending
the original SURF descriptor to a 3D spatio-temporal Space. These descriptors
are then quantized by K-means clustering and each Video clip is represented as
a histogram with K bins. Support Vector Machine is then used for classification.
We propose a novel codebook based on spatio-temporal descriptors called Bag
of Spatio-temporal Visual Words BoSTVW. We prove experimentally that this
contribution outperforms other state-of the-art approaches on the increasingly
complex and popular KTH Dataset [14] and UCF sports Dataset [15].
The paper is structured as follows. Initially, an overview of recent related work
is given in section 2, while section 3 explains the proposed approach. Extensive
results and conclusions are presented in sections 4 and 5 respectively.

2 Related works

Inspired from the text retrieval community, the ’bag of words’ BoW, has recently
become popular for image [16] and video analysis [17]. In action recognition’s



state-of-the-art, the BoW models were widely used since they have shown the
effectiveness of local appearance based descriptors [18], [19]. However, in compar-
ison with other approaches, Bag of visual word selection is still in its infancy. To
extract video descriptors, many researchers have been investigating in tracking
major parts of human bodies then extracting features from these regions [20].
However, they need to setup many hypothesis. These considerations and hypoth-
esis are often demanding. So that, methods based on spatio-temporal features
are promising for action recognition. Some of them are based on the extraction
of low-level optical flows from cuboids [21] this method gives good results in
terms of feature selection and a good classiffications accuracy [21]. But they
presents limits concerning the long computational time they require. Dollar et
al. detect local cuboids to apply 1-D Gabor filters in the temporal direction
and 2-D Gaussian kernels in the spatial space [11], and they produce video vi-
sual words based on vector-quantizing in the same way as bag-of-visual-words
for object recognition [16]. In the same direction, Laptev et al proposed STIP
(Spatio-Time Interest Points) to detect cuboids [12]. This method is considered
as an extension of Harris detector. Nevertheless, the limits of the aforementioned
methods not only concerns the hardness of finding the best cuboid size, but also
the high computational requirements. To overcome these problems, we propose
to detect interest points using SURF/Hessian [13]. Then we segment the videos
into Groups of interest points (GIP) and Frame Packets (FPs) to reduce the com-
putation time. We use Sun, D at al. [22] optical flow detection methods which
allows to extract spatio-temporal SURF by tracking interest points instead of
cuboids.

Fig. 2: Example of SURFs found using Hessian detectors on diffrent frames from
UCF sports dataset.

3 The proposed approach for action recognition

The proposed method aims at detecting human actions, to attend this pur-
pose, first video sequences are segmented in Frame Packets (FPs) and Group
of Interest Points (GIP). Second, based on a novel combination between optical
flow computed by [22] and Spatio-Temporal SURF (Speeded-Up Robust Fea-
ture) [13], the interest points ST-SURF are localized and extracted, from all
training video FPs. Then, the extracted ST-SURFs are clustered using K-means
clustering algorithm. The video clips are represented as a K-bins histogram of the



quantized descriptors ’bag of spatiotemporal visual words’ BoSTVW. Finally, an
SVM classfier is trained using these histograms (One vs all).

3.1 Frame Packets (FPs) and Group of Interest Points (GIP)
segmentation

To be able to achieve accurate and fast computation, our algorithm does not use
all the frames available in a video in order to extract its descriptors. Instead,
we have created and used the concepts of Frame Packets (FPs) and Group of
Interest Points (GIP). We assume that, between three successive frames (n-1, n
and n+1), an interest point (from one picture to another) can have three possible
states: still, moving and disappear. The first and last states are obvious because
in the first case no motion is detected. In the last case the IP has disappeared
and cannot be tracked any more. The second state is the one that concerns us
the most, since there is a displacement and we can track the motion angle. From
now on, we assume that α is the angle between the lines segments supporting
the motion of an IP from the couple of frames (n-1, n) and (n, n+1), Fig 3. By

Fig. 3: IPs trajectory tracking for FPs segmentation

comparing α to αmax (a parameter fixed at the beginning of the processing) we
are able to segment a succession of frames, that we call here Frame Packets (FPs),
in which each IPs α is lower than αmax. By calibrating this angle of tolerance,
we are able to certify that, within this FP, all IPs movements are within this
tolerance parameter. This means that we cannot miss any significant movement
likely to influence the remaining computing. We introduce, then, the concept of
Group of Interest Points (GIP) in order to be able to have more control over the
size (in number of frames) of the FP. In fact, a GIP is a parameter defining the
number of IP that must be grouped together. This grouping is performed over



successive IPs in a frame. By defining this number NGIP we can compute an
average angle (αavg) for a certain GIP and compare it to the αmax. The higher
NGIP is the less the αavg will be sensitive to motion and the more the FP will
contain frames. Here are the steps of our segmentation algorithm. Let us suppose
that we are beginning the computation of a new FP:

– We extract the IP of the frames one and two.
– We define the GIPs based on the NGIP parameter fixed at the beginning of

the algorithm.
– We compute the line supporting the motion for each corresponding IP within

these two frames.
– We apply the above three steps to the frames two and three.
– We compute the angle between each motion line and we extract the average

angle for each GIP.
– We compare each average angle to the αmax (fixed at the beginning of the

algorithm).
– We continue performing the above six steps over the next frames (taking,

always, the first motion direction as reference to all remaining comparisons)
until finding an average angle of a GIP higher than the maximum angle. In
this case we can define the FP and assume, with confidence, that the first
and last frames of this FP can fully describe the motion within.

3.2 Interest points extraction

In the following, we present the used interest point detector followed by a descrip-
tion of the feature we extract. For interest points detection we choose the Hessian
detector [23]. It searches for image locations that exhibit strong derivatives in
two orthogonal directions. It is based on the matrix of second derivatives, the so-
called Hessian [23]. In 2004, Lowe [13], presented SIFT for extracting invariant
features from images that can be robust against image scale and rotation. Then
it was widely used in image, recognition and retrieval etc. However, extracting
robust features approaches are very slow. Bay et al. speeded up robust features
by using integral images for image convolutions and Fast-Hessian detector [13].
Their experiments turned out that SURF was faster and it works well. We use
the extraction solution given by [13] to extract interest point feature. This choice
is motivated by the robustness, the smaller size of this feature and their excellent
performances attested in various datasets for action recognition [24]. The SURF
feature is a 64-D vectors that describes spatial patterns around detected points.
Refer to [13]for the detail.

3.3 Surf Tracking Into 3D Feature Space

Features’ tracking is performed by estimating optical flow. To increase opti-
cal flow estimation accuracy, many researches are inspired from the Horn and
Schunck (HS) Optical flow formulation [22]. In fact, they focuses on optimizing an
objective function which combines the image’s properties and its spatial motion



prediction. Sun end al. proposed a new algorithm to approximate an optimized
computationally tractable objective function, based on the original HS formula-
tion. They first, use median filtering to denoise the flow, Exploiting connections
between median filtering and L1-based denoising. They proved that algorithms
relying on a median filtering step are approximately optimizing a different ob-
jective that regularizes the flow over a large spatial neighbourhood [22]. The
resulting algorithm ranks 1st in both angular and end-point errors in the Mid-
dlebury evaluation in March 2010 [22]. In our work, we considered every Frame
Packet as a volume of frames in the 3D space called FP Volume (FPV ), this
cubic volume is characterized by its frames’ number(FN) , its frames’ surfaces
dimensions (FS) and its center (FPV c). A given interest point IP = (x, y, t)
is defined by its position (x, y) and its frame t. In frame (t + n), the IP moves
by a displacements u in the x direction, and v in the y direction. IP becomes,
IP (t+n) = (x+u, y+ v, t+n). In all our experiments, unless mentioned other-
wise, we assume that due to the video segmentation into FPs, the motion vectors
trajectory remain stable. For stagnant interest points u = v = 0. Thus, in the
FPV , the 3D direction (u, v, n) represent the direction of the IP motion. The
motion vector is calculated by the Sun et al. [37] optical flow approach. Our con-
tribution consists on the use of motion orientation and position to characterize
the motions, instead of using the direction vector (u, v, n) generated from optical
flow computation. We suppose that the motion vector in the 3D space can be
defined as the intersection of two planes perpendicular respectively to the plane
(t, x) and the plane (t, y). This parameterization is one among several possible
representations of 3D lines [25]. To extract IP orientation, we project its motion
vectors onto the planes (t, x) and (t, y) of the FPV to define an angle for each
projection, the first angle αx between optical flow and the plane (t, x), the angle
αy between the plane (t, y) and the motion vector.

∝x= 90− 180

Π
arctan(u),∝y= 90− 180

Π
arctan(v). (1)

For each IP , we project its motion vector onto the planes (t, x) and (t, y) and
obtain two lines Lx and Ly. The orthogonal projection of FPV cx and FPV cy
onto the lines Lx and Ly allows the computing of both distances Dx and Dy

between the cube center and the lines supporting the motion vectors (Lx and
Ly).
For an IP located at (x, y, t):

Dx = Dxu −Dtv, Dy = Dyv −Dtu (2)

where

Dxu = (x− xmax/2)cos(180/Πarctan(u)) (3)

Dtv = (t− tmax/2)sin(180/Πarctan(v)) (4)

Dyv = (y − ymax/2)cos(180/Πarctan(v)) (5)



Dtu = (t− tmax/2)sin(180/Πarctan(u)) (6)

where tmax, xmax and ymax are the dimensions of the Frame Packet volume.
In the following, Dx and Dy describe the motion distances of a given interest
point. Fig. 4, is a graphical illustration of the cube center and its projection into
the planes (t, x) and (t, y).

Fig. 4: The projection of a motion vector in the adjacents planes.

ST-SURF Extraction: This step consists in the generation of the novel ST-
SURF that we designed. This descriptor is represented by spatial feature 64-D
vector, and temporal 4-D feature, we concatenate both vectors into one 68-D
spatiotemporal descriptor vector, and thus we extend the image SURF descriptor
[13] to videos. These features will tracks the interest point through time in each
FP we defined. The size of a FP depends on its average frames number. In our
work we consider only moving interest points (where ∝x 6= 0 and ∝y 6= 0).

ST-SURF Training Pipeline: For the purpose of action recognition, we fol-
low the same steps of the case of object categorization. After the extraction of
ST-SURF descriptors, we define a spatio-temporal words dictionary. The basic
idea is to assign a set of objects into groups so that the objects of similar type
will be in one cluster, in order to construct a visual codebook, which can be
used to represent an action, a scene or en object. Recently, the K-means algo-
rithm has been widely used to construct the visual codebook because of its high
performances and simplicity. A codebook is learned to quantize input features
into visual spatiotemporal codewords. Fig. 5, illustrate the training steps of UFC
sports dataset’s videos.

Evaluation Pipeline: After the extraction step, the generated ST-SURFs are
quantized into visual words using k-means clustering. Each video sequence can



Fig. 5: Training pipeline

then be represented as the frequency histogram over the visual words. Generally,
using a large-sized codebook allows to obtain high recognition accuracy, yet an
oversized codebook leads to high quantization errors. The resulting histograms
of visual word occurrences are used as classification inputs. We use a non linear
support vector machine to classify human actions.

4 Experiments

In the following we describe the datasets used for the evaluation of the proposed
work. We evaluate the ST-SURF in a bag-of-features based action classification
task and compare our approach to the state-of-the-art employ.

4.1 Experimental Setups and Data

Dataset: The proposed framework is tested on the KTH dataset [14] and UCF
sports Dataset [15]. The KTH dataset is commonly used as a public benchmark
test of spatio-temporal features [24]. This dataset contains six kinds of actions
such as walking, running, jogging, boxing, hand waving and hand clapping. We
consider 6 action classes by 25 persons in 4 different scenarios with a total of
2391 video samples. The average length of videos in the KTH dataset is about
20 second long. The second one is the UCF sports dataset, more realistic and
challenging data obtained from broadcast sport videos by Ahmed et al. [15]. The
collection represents a natural pool of actions featured in a wide range of scenes
and viewpoints. The publicly available part of this dataset contains nine actions
namely diving, golf, swinging, kicking, lifting, horseback riding, running, skating,
swinging and walking. This dataset contains close to 200 video sequences at a
resolution of 720x480 [15].

Parameter Settings: In all our experiments, we explored optimal parameter
settings. We evaluate the classification rates of both KTH and UCF datasets
while changing the codebook and the FPs sizes. The results shows that the
empirically optimal size book is k = 4000 with αmax = 42◦ and GIP = 38.
These settings gave us empirically satisfactory results.



4.2 Experimental results

KTH Dataset: From the recently reported results of the state-of-the-art, we
can clearly conclude that using Hessian detector, Laptev and al. [10] obtained
88.7% using a combination of HOG (histograms of gradient orientations) and
HOF (histograms of optical flow) descriptors, 88.6% using HOF, and 77.7%
with HOG . We note that Kläser and al. achieved an accuracy of 84.6% us-
ing HOG3D descriptor, which is a comparable results with HOG/HOF [10].
The combination SURF/Hessian detector gives 84.6% for williems and 86% for
Noguchi [24]. In the table. 1, the first row compares the best average accuracy
(BAA) for the differents detector/descriptor combinations reported by other
researchers, on the KTH dataset. The average accuracy for Hessian (HAA) de-
tector/descriptor combinations on the KTH dataset are drawn in the second row.

UCF sports Dataset: We note that Kläser and al. achieved an accuracy of
85% using HOG3D/Gabor descriptor, Laptev and al. [10] obtain 81.6%using
HOG/HOF, 82.6% using HOF, and 77.4% with HOG. The first row, in Ta-
ble. 2, compares the best average accuracy (BAA) for the differents detec-
tor/descriptor combinations reported by other researchers, on the UCF sports
dataset. The average accuracy for Hessian (HAA) detector/descriptor combi-
nations on the UCF sports dataset are drawn in the second row.

Table 1: Average accuracy for various detector/descriptor combinations on the
KTH dataset.

. HOG3D HOG/HOF HOG HOF E-SURF t-SURF ST-SURF

BAA 90% 91.8% 82.3% 92.1% 81.4% 86% 88.2%
HAA 84.6% 88.7% 77.7% 88.6 % 81.4% 86% 88.2%

Table 2: Average accuracy for various detector/descriptor combinations on the
UCF sports dataset.

. HOG3D HOG/HOF HOG HOF E-SURF t-SURF ST-SURF

BAA 85% 81.6% 77.4% 82.6% 77.3% - 80.7%
HAA 78.9% 79.3% 66.0% 75.3% 77.3% - 80.7%

Tables 3-4 are the confusion matrices of the actions classification results based
on two type of features. the first matrix describle the classification result for the
visual SURF feature reported in [24]. The result among a single visual feature
give bad classification results for all the actions. Based on Table. 4, confusion



Table 3: SURF confusion matrix action recognition on the KTH dataset.

Table 4: ST-SURF confusion matrix action recognition on the KTH dataset.

matrix show that the original combination, that we proposed, of both visual and
motion features (ST-SURF) boosted significantly the classification accuarcy. Re-
garding the average result over each of the six actions’ KTH dataset, ST-SURF
produced good result, however, less accuracy is observed in the jogging and run-
ning actions because thes actions are almost similar. lastly but not least, com-
paring with results driven by the best result of the state-of-the-art, our method
achieve 88.2% better than the 86% reported by Noguchi and al. [24] using Spatio-
temporal SURF. Outperforming the results of the Cuboids/HOG combinaison
obtained by [12] 82.3% and the 81.4% reported by Willem and al. [26]. Based
on the confusion matrix of UCF sports Dataset given in Table. 2, the ST-SURF
outperform the best result driven by the state-of-the-art using Hessian detector
and achieves 80.7% of accuracy. We note that ST-SURf/Hessian gave better re-
sults in realistic videos. We are still below the results driven by Laptev and al.
with 85% using the HOG3D/Gabor combination, and their 91.8% reached using
Harris3D/(HOG/HOF), this can be due to different codebook generation and
the use of different interest points detectors. This motivates further investiga-
tions of different interest points detectors and realistic vidoe settings. Regarding
all these results our method is equivalent to the state of the art, and shows sig-
nificantly better performance, outperforming many results driven in the same
setup.

Table 5: ST-SURF confusion matrix action recognition on the UCF sports
dataset.



5 Conclusion

In this paper, We have investigated a novel scheme to efficiently segment video
sequences into a new concept we called Fram Packets. Then we proposed a novel
spatio-temporal descriptor based spatio-temporal interest points. The designed
descriptor is an extension of the SURF to the temporal domain. The proposed
feature extraction consists on detecting of the Surf points and mapping them
into a 3D feature space based on an original exploitation of the optical flow ori-
entation and position. Only the moving SURF are then selected. The extracted
features are embedded into a bag of visual word pipeline, to finally classify six
actions from KTH Dataset and then nine actions from the UCF sport dataset.
Furthermore, the proposed framework demonstrate promising recognition per-
formance on tow standard benchmarks with the accuracy about 88.2% in KTH
and 80.7% in UCF sports. We consider many perspectives for the future, the
most important includes applying the same work to tackl more complex and
realistic actions. We also plan to improve our ST-SURF and consider combining
it with variety of low level features and use these data to video searching and
retrieval. Furthermore, we look to investigate diffeterent interest points detec-
tors and larger datasets in bag-of-visual-words based representations. Finally,
the results we obtained demonstrate the viability of our approach and proove
that even without refinements we already are equivalent to the state-of-the-art
performances.
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