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ABSTRACT

This work addresses the problem of correspondence matching
in multiview video sequences when co-acquired depth maps
are available, as in the novel Multiview Video plus Depth
(MVD) format. For the purpose of activity-based correspon-
dence matching, we exploit the view depth information, al-
lowing a thorough geometrical analysis of the video scene,
and the statistical analysis of the inter-frame differences.
In this paper we outline a correspondence matching pro-

cedure exploiting mutual information between active areas in
different sequences. For activity detection we make use of the
depth information and the estimated Higher Order Statistics
of the inter-frame differences, which are resilient to lumi-
nance variations.
The procedure encompasses two steps, namely: i) a se-

lection of points candidate for matching search, and ii) the
search of the most similar points; this procedure does not re-
quire any preliminar activity detection or segmentation stage.

Index Terms— Correspondence matching, Higher Order
Statistics, Multiview Video plus Depth (MVD) format.

1. INTRODUCTION

The problem of processing multi-view sequences represent-
ing the same scene under different point of views in order
to find corresponding points occurs in a variety of appli-
cations, such as computer vision, video surveillance, image
registration, image fusion [1]. Correspondencematching pro-
cedures based on activity matching rely on the claim that a
real point, viewed in two concurrent frames of two different
views, could be classified as belonging to the background
(still) or foreground (moving) plane. Thus, collecting this
binary classification information for an image point along a
certain number of video frames generates an activity vector
representative of a real point in the 3d space. Thereby, points
of different views having similar activity vectors are likely to
originate from the same real point; this forms the basis for ac-
tivity based correspondence matching. In [2], activity based
correspondence matching is realized by adopting a Hamming

distance criterion between activity vectors, whereas on [3] the
distance is defined taking into account the mutual informa-
tion between activity vectors as well. This approach proves
resilient to luminance errors due to noisy, low-contrasted ac-
quisitions. On the other hand, both the procedures in [2, 3],
being based on a preliminar background/foregorund classifi-
cation procedure, depend on a foreground detection prepro-
cessing stage whose performance severely affects the overall
correspondence matching performance.

Several approaches to activity detection and segmentation
[4], [5],[6] rely on Higher Order Statistics of the inter-frame
differences. Besides, depth map acquisition or estimation [7]
is gaining relevance for activity detection and segmentation
purposes, especially in the framework of multiview video [8].
In [9], the authors propose a method for detecting tempo-
ral changes of the three-dimensional structure of an outdoor
scene from its multi-view images captured at two separate
times. In [10], an automatically learning multi-view detector
is described. In [11], the authors present an automatic fore-
ground object detection method for videos captured by dif-
ferent moving cameras that exploit correspondences between
differently acquired views, whereas in [12] the authors pro-
pose an automatic segmentation system exploiting multiple
images. In [13] the authors present a layered stereoscopic
moving-object segmentation method based on the higher-
order statistics (HOS) of the frame-difference and processing
it by multiple depth-layer masks [14]. Thereby, the geomet-
rical and statistical information carried by the availability
of enriched video format encompassing multiple views and
depth images [15] boosts the development of advanced cor-
respondence matching techniques exploiting the available in-
formation in a joint fashion.

Herein, following the approach in [3], we investigate cor-
respondence matching based on mutual information, but we
introduce the following novel contributions. Firstly, we base
our analysis in depth and HOS sequences rather than binary
segmentation maps used in other correspondence matching
works. Thus, the preliminar foreground/background segmen-
tation is avoided, and the depth and HOS sequences, having
pixels’ values quantized to more than two levels, provide



richer information than the binary background-foreground se-
quences in [3], while still assuring resilience to luminance
noise. Secondly, we introduce a self-information-based cri-
terion for the selection of pixels eligible for correspondence
matching. The pixel selection stage has an important impact
on the overall performance, and it allows avoiding any com-
putationally demanding activity detection stage. We present
here preliminar promising results that assess the satisfactory
performance of our correspondence matching procedure even
in absence of any post-processing validation and regulariza-
tion stage, which is often required by state-of-the-art algo-
rithms [3].

2. SIGNAL MODEL FOR CORRESPONDENCE
MATCHING PURPOSES

Let us consider a multiview sequence, i.e. a set of video se-
quences acquiring the same real scene for the same time inter-
val from different points of view. Let us denote by I(i)

t (u, v),
the t-th frame extracted from the i-th camera view sequence.
Each point (u, v) of the frame is the projection on the image
plane of a real point (x, y, z), i.e. (u, v) = Π(i)(x, y, z).
Let us denote by B(i) the set of points (u, v) which are

obtained by projection in the camera plane of real points
(x, y, z) belonging to the static background. Similarly, let
us denote by F (i) the points representing the projection of
foreground moving objects. The frame support D(i) can be
partitioned as follows:

D(i) = B(i) ∪ F (i), B(i) ∩ F (i) = # (1)

Extending the analytical framework proposed in [4], we write
I(i)
t (u, v) as:

I(i)
t (u, v) = b(i)

t (u, v) + m(i)
t (u, v), (2)

being b(i)
t (u, v) $= 0 iff(u, v) ∈ B(i) and m(i)

t (u, v) $=
0 iff(u, v) ∈ F (i). As aforementioned, we assume that a
real point (x, y, z) is contemporaneously seen as belonging
to the background or to the foreground in two contemporary
frames belonging to two different views.
Thus, collecting such information on the image point

(u, v) along a certain number T of video frames generates an
activity vector a(u, v). Although in each frame of the same
view the pixel (u, v) of the 2d representation can be associ-
ated to different real world points (u, v) = Π(i)(x, y, z) in
different frames of the same view, the temporal evolution of
the activity vectors in corresponding point is coherent in the
different views. Specifically, the activity vector is defined
as:

a
(i)(u, v) = [a(0)(u, v) . . . a(T−1)(u, v)] (3)

being a(k)(u, v) a binary foreground indicator function de-
fined as a(k)(u, v) = 1 iff(u, v) ∈ F (i). Image point corre-
spondence matching between different views is then realized

by distance matching of the corresponding activity vector;
in [2], a Hamming distance criterion is exploited, whereas
in [3] the distance is defined taking into account the vec-
tor entropy as well. Both procedures, being based on a
background/foregorund classification procedure, depend on a
foreground detection preprocessing stage whose performance
severely affects the final correspondence matching results.
Herein, we make a twofold observation, that is:

• in several activity detection approaches, the foreground
indicator function defined as a(k)(u, v) = 1 iff(u, v) ∈
F (i) is observed to be correlated with the difference
between consecutive video frames; this is widely ex-
ploited in a variety of algorithms for activity detection
purposes, as pointed out in [17];

• within the stationarity interval of the multiview acqui-
sition geometry, a deterministic relation can be found
between the distances of the real point (x, y, z) with
respect to the centers of the different cameras.

Stemming on these observations, we formally introduce
the definitions of the video depth maps as well as of the
inter-frame differences and of their HOS. In the following,
we describe the correspondence matching procedure based
on such information.
Let us first introduce the concept of depth maps. Each

point (u, v) of the image frame is the projection of a real
point (x, y, z) on the image plane; the distance of (x, y, z)
with respect to the camera center, is stored in the so called
depth map, and it is indeed related to object surfaces in the
acquired scene. Let us denote by d(i)

t (u, v), the depth map
relative to the t-th frame of the i-th camera view sequence.
Although the depth map may be limited in range and spatial
resolution and may suffer of acquisition noise, especially on
the edges, it carries relevant information on real world objects
and it can be exploited for segmentation purposes. In [11],
the non Gaussian areas of a video frame are matched to a
co-acquired depth map in order to discriminate low-depth
region (foreground) from high-depth region (background).
In the multiview framework, given an image point (u, v)

within the frame I(i)
t (u, v) and its depth map value d(i)

t (u, v),
its 3D positions and, as a consequence, its distance with
respect to a different camera can be computed if the rel-
ative locations of the multiview cameras are known. A
particular case is found when the distance between cam-
eras is much smaller than the object-to camera distance.
Hence, a real point (x, y, z) has different projection points
(ui1 , vi1) = P (i1)(x, y, z), (ui2 , vi2) = P i2(x, y, z) in dif-
ferent cameras, but its distance from the cameras is approx-
imately the same, i.e. d(i1)

t (ui1, vi1) ≈ d(i2)
t (ui2, vi2). In a

nutshell, an object is expected to belong either to the low-
depth region (foreground) or to the high-depth region (back-
ground) in both cameras.



Let us now introduce the HOS of the inter-frame differ-
ences. The inter-frame difference at temporal distance t0 is
written as

∆(i)
t (u, v) = I(i)

t (u, v) − I(i)
t−t0(u, v)

=



























b(i)
t (u, v) − b(i)

t−t0(u, v), (u, v) ∈ B(i)
t ∩ B(i)

k−t0

m(i)
t (u, v) − b(i)

t−t0
(u, v), (u, v) ∈ F (i)

t ∩ B(i)
k−t0

b(i)
t (u, v) − m(i)

t−t0(u, v), (u, v) ∈ B(i)
t ∩ F (i)

k−t0

m(i)
t (u, v) − m(i)

t−t0(u, v), (u, v) ∈ F (i)
t ∩ F (i)

k−t0

(4)

Remarkably, the background difference tends to assume a
Gaussian statistic, and this feature has been exploited for
foreground extraction in single view video. Specifically, the
fourth-order cumulant of a Gaussian random variate is zero.
Thereby, when applied to the inter-view differences, its sam-
ple local estimate on a W × W window can be matched
against a threshold to reject local noise contribution.
Then, in principles we have

K(i)
t (u, v) = E

{

(∆t(u, v) − E {∆t(u, v)})4
}

− 3
(

E
{

(∆t(u, v) − E {∆t(u, v)})2
})2

(5)

whereas its sample version is computed by replacing the ex-
pected value with a spatial local average of the variates under
concern on a W × W window around (u, v). Besides, fol-
lowing the approach in [4], for the purpose of a fast estimate
of the local sequence activity the sample cumulant evalu-
ation can be substituted by the computation of the sample
fourth-order moment or even of a suitable Hybrid Nonlinear
Moment [16]. Herein, we refer to the sample moment:

k̂(i)
t (u, v) =

(

∆t(u, v) − ∆t(u, v)
)4

(6)

that, after a thresholding stage meant to eliminate noise con-
tributions, provides an effective tool for HOS-based activity
vector estimation. An example of depth and HOS sequences
is reported in Fig.1.
Given this underlying correlation of the depth maps and

HOS with object segmentation, here, we extend the activity
analysis originally applied to a binary foreground/background
segmentation map [3] both to the depth domain d(i)

t (u, v) and
to the domain of the HOS of inter-frame differences k̂(u, v).

3. DEPTH BASED AND HOS BASED
CORRESPONDENCE MATCHING

Firstly, we analyze the activity detection correspondence
matching based on the mutual information between depth-
based activity vector. Let us build the depth-based activity

(a) k̂(i)
t (u, v)
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Fig. 1. Thresholded and quantized HOS and depth maps.

vector a
i
d(u, v) of the i-th view by collecting depth infor-

mation for k = 0, · · ·T − 1, i.e.:

a
(i)
d (u, v) =

[

d(i)
0 (u, v) d(i)(u, v) . . . d(i)

T−1(u, v)
]

(7)

We aim at matching the pixel (u, v) characterized by the
depth-based activity vector a(i)

d (u, v) of the i-th view with a
pixel (u′, v′) of the j-th view characterized by the most sim-
ilar depth-based activity vector a

(j)
d (u′, v′) of the j-th view.

Following the approach in [3], the similarity is herein ex-
pressed in terms of mutual information between vectors. To
compute the similarity measure, we build the co-occurrence
matrix Cd(u, v; u′, v′) of the values of depth extracted at the
locations (u, v; u′, v′) from the different views at the same
temporal index t, namely the corresponding elements of the
two activity vectors a

(i)
d (u, v), a(j)

d (u′, v′). Specifically, the
cd
l1,l2

element of the co-occurrence matrix Cd(u, v; u′, v′)
counts the number of occurrences of the event

E =
{

d(i)
t (u, v) = l1 and d(j)(u′, v′) = l2

}

(8)

throughout the observed sequence, i.e. t = 0, · · ·T − 1, nor-
malized by the number of frames T . Thereby, the probability
of co-occurrence of two depth values l1, l2 is roughly esti-
mated as cd

l1,l2
. With these positions, the similarity measure

Sd between the pixel (u, v) of the i-th view and a pixel
(u′, v′) of the j-th view is computed as:

Sd(u, v; u′, v′) =
Ld−1
∑

l1=0

Ld−1
∑

l2=0

cd
l1,l2 · log2

cd
l1,l2

∑

l c
d
l,l2

∑

l cd
l1,l

(9)

Besides, following the same procedure, we can introduce
the activity vectors based on the HOS of the inter-view dif-
ferences k̂(u, v) for k = 0, · · ·T − 1, i.e.

a
(i)
HOS(u, v) =

[

k̂(i)
0 (u, v) k̂(i)

1 (u, v) . . . k̂(i)
T−1(u, v)

]

(10)

To perform the HOS-based correspondence matching, we
then build the co-occurrence matrix of the depth values



CHOS(u, v; u′, v′) and finally resort to the HOS based
similarity metric:

SHOS(u, v; u′, v′) =

LHOS−1
∑

l1=0

LHOS−1
∑

l2=0

cHOS
l1,l2 · log2

cHOS
l1,l2

∑

l cHOS
l,l2

∑

l c
HOS
l1,l

(11)

being LHOS the number of levels of the quantized HOS
information.
Remarkably, each pixel can be characterized can be char-

acterized by the self-information of the corresponding activity
vector. Specifically, referring to the depth-based correspon-
dence matching procedure, if the depth is quantized using Ld

levels, each pixel (u, v) is characterized by the entropy

H(a(i)
d (u, v)) =

Ld−1
∑

l=0

pl log2(1/pl) (12)

where pl represents the probability of the l-th depth level,
l = 0, . . .Ld − 1. For the case of HOS based matching, the
point (u, v) is characterized by a different entropy measure
H(a(i)

HOS(u, v)).
In Fig.2(a) we plot a bidimensional map of the en-

tropy of the activity vector in the depth domain, namely
H(a(i)

d (u, v)). Interestingly enough, the self-information
due to the activity as measured in the HOS domain is not
related to the luminance discontinuities, exploited by corre-
spondence matching methods such as SIFT [21] or SURF
[22], but rather on the changes occurring in a certain location
(u, v) throughout the T observed frames. A similar behavior
is observed in Fig.2(b), where we plot a bidimensional map
of the entropy of the activity vectors H(a(i)

HOS(u, v)) in the
HOS domain. The activity vector self-information is herein
used for the purpose of selecting the pixels to be matched,
as shown in the following Section.

(b) Depth-based Entropy (a) HOS-based Entropy

Fig. 2. Entropy maps of the activity vectors.

4. EXPERIMENTAL RESULTS

We present here experimental results obtained by applying
the above introduced HOS/depth correspondence matching

(a) i-th view

(b) j-th view

Fig. 3. Correspondence matching in the HOS domain.

procedure on the test sequence Breakdancer [19, 20] hav-
ing a spatial resolution of 768 × 1024 pixels and a tem-
poral resolution of 25 frames per seconds. We discuss the
performance of correspondence matching performances ob-
tained using the above introduced similarity metrics, using
T = 100; this choise provides a good balance between com-
putational cost and estimation performances. Each HOS map
is thresholded and logarithmically quantized to LHOS = 16
levels, the depth maps are thresholded, clipped, and uni-
formly quantized at Ld = 128 levels; the quantization stage
reduces the estimation/acquisition noise effect and decreases
the computational complexity. Then, two steps are applied,
namely: i) selection of points candidate for matching re-
search, based on the activity vectors self-information, and
ii) search of the most similar points according to the activ-
ity vectors mutual-information. The results shown here are
not directly comparable with state-of-the-art methods since,
differently from what presented in [3] and in most litera-



(a) i-th view

(b) j-th view

Fig. 4. Correspondence matching in the depth domain.

ture methods, here no post-processing is applied for the pur-
poses of validation and regularization of the matched points.
Besides, w.r.t. [3], where two independent pre-processing
stages are applied, namely foreground/background segmen-
tation and activity detection, here only entropy based pixel
selection is applied.
In Fig.3(a) and (b), we show an example of corresponding

pixels pairs found based on the HOS information whereas in
Fig.4(a) and (b) an example of corresponding pixels pairs
for the depth based case. In both the Figures we recognize
that the proposed methods are able to match points which
are in a low contrasted luminance areas (see the highlighted
points labeled as A) but are well characterized in terms of
HOS difference or depth, respectively. Points which are in a
high contrasted luminance areas (highlighted points labeled
as B) can be recognized as well. In Fig.5(a) and (b), we
examplify one matched vectors’ pair for the HOS and depth
based cases, respectively; further results are available at [23].
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(a) HOS-based activity vectors
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(b) Depth-based activity vectors

Fig. 5. Plot of two activity vectors evaluated in the HOS and
depth domain for two matched points (u, v) and (u′, v′).

From the above results, a few remarks can be drawn.
First, both the HOS and depth domain lead to effective corre-
spondence matching, and are therefore coandidate for activity
based correspondence matching. The HOS based approach
inherently realizes a change detection and does not require a
preliminary segmentation stage. The segmentation stage can
be also avoided when dealing with depth maps, since the ac-
cqusition stage itself provides information about the layered
objects present in the scene. Besides, the HOS and depth
based approach presents different strengths, since the first
can work also in absence of depth information whereas the
second works also in case or noisy, low-contrasted images or
even images acquired in the dark for surveillance purposes.
The preliminary results shown here pave the way for further
joint processing of these information, possibly combined on
the basis of their estimated reliability [18].

5. CONCLUSION

In this paper, we have investigated two strategies for finding
corresponding pixels in different views of the same scene



based on their activity; as a by-product of the study, an
information-based criterion for selecting the pixels to be
matched is given. The first approach characterizes the pixels
activity using the co-acquired video depth maps, whereas
the second approach exploits the Higher Order Statistics of
the inter-frame difference. With respect to state-of-the-art
works, both the strategies avoid preliminar pre-processing
stages and open the path towards joint exploitation of sta-
tistical and geometrical features for multiview video scene
analysis.
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