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ABSTRACT

Kernel-design based method such as Bilateral filter (BIL), non-local means (NLM) filter is known as one of the
most attractive approaches for denoising. We propose in this paper a new noise filtering method inspired by BIL,
NLM filters and principal component analysis (PCA). The main idea here is to perform the BIL in a multidi-
mensional PCA-space using an anisotropic kernel. The filtered multidimensional signal is then transformed back
onto the image spatial domain to yield the desired enhanced image. We will show that the proposed method is
a generation of all kernel-design based methods. The obtained results are highly promising.
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1. INTRODUCTION

Image denoising is an important problem in image and signal processing. Many methods share the same basic
idea: denoising is carried out by averaging similar pixels. These methods are based on the observation that any
image often contains self-similarity and some spatial redundancy. If the noise is considered as an independent
and identically distributed (i.i.d.) random signal, it could be smoothed out by averaging similar pixels. The
main issue of this approach is how to define similar pixels for a given one. The simplest one is Gaussian (GAU)
filter which considers the neighbors as similar pixels. It is clear that this method fails at edge and texture
regions. Another method called Unilateral filter (UNI)1 uses intensity information to estimate the similarity
between pixels. Bilateral filter (BIL)2 combines GAU and UNI to define similar pixels for a given one. It takes
into account both spatial and intensity information. The relation between BIL and anisotropic filtering has been
investigated in [3,4]. Another adaptive filtering approach, called Non-Local Means (NLM),5,6 has been recently
proposed. Unlike pixel-based similarity in GAU, UNI and BIL, NLM proposes to use patch-based similarity
which makes the method more robust in textured and contrasted regions. Many methods for improving the
performance of NLM have been proposed. The fast NLM (FNLM) is presented in [7]. NLM in the wavelet
domain is introduced in [8]. In [9], the authors propose a transform which maps each patch in the image domain
to a point in a high dimensional space called patch-space and show that NLM algorithm is a variant of an
isotropic filter in this new space. In this paper, we propose to use principal component analysis (PCA) to reduce
the dimensionality of the patch-space and then form another one called High Dimensional PCA-space (HDPCA)
from the most significant components. Similar to the work in [9], FNLM can be drawn as a variant of an isotropic
filter in the HDPCA-space. In order to improve the denoising performance, instead of using this isotropic filter,
we propose to use BIL, i.e. an anisotropic filter, in the HDPCA-space.

The paper is organized as follows: section 2 is devoted for a review of related works, the proposed method is
described in section 3 followed by experimental results in section 4. The conclusions are finally given in section
5.
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2. RELATED WORKS

2.1 Kernel design based method: from pixel-based to patch-based

Let us define a 2D noise-free image u : R2 → R. Its noisy version v at pixel x = (x1, x2) defined as v(x) =
u(x) + n(x) where n is identical, independent Gaussian noise. The aim of denoising is to estimate u from v.
One of well-known approaches to filter out independent and identically distributed (i.i.d) Gaussian noise is to
take the average of similar pixels. The basic idea behind the success of this approach is to exploit the spatial
redundant information in the image. An unifying formula for these methods could be expressed as follows:

û(x) =

∑
y∈Ω

w(x,y)v(y)∑
y∈Ω

w(x,y)
(1)

where û is restored pixel, x = (x1, x2) and y = (y1, y2) are pixel’s coordinates, w(x,y) is similarity measure
between v(x) and v(y). The key issue is how to determine similar pixels for a given one, i.e. how to calculate
w(x,y). Indeed, each method proposes a kernel to estimate this value. The simplest one is Gaussian filter (GAU)
which define similar pixels in function of geometric distance. If closer a pixel is, more similar it is, then more
weight it has:

wGAU (x,y) = exp

(
−‖x− y‖2

h2
s

)
(2)

where hs is the spatial parameter. However, it is well known that this weight fails at contour and texture regions.
To overcome this drawback some methods have been proposed to adapt the filtering strength to the local content
of the image. The first one is proposed by Yaroslavsky called unilateral filter (UNI):1

wUNI(x,y) = exp

(
−‖v(x)− v(y)‖2

h2
r

)
(3)

where hr is the range parameter. Note that UNI filter is data dependent. Instead to consider the geometric
distance between pixels, it takes into account the intensity. Unlike GAU filter, this filter can well distinguish
pixels in contour regions. We can note that this type of filter average values that are similar and potentially can
be far away in the image. Another method called Bilateral filter (BIL) is proposed Tomasi et al.2 in 1998. This
filter simply unifies GAU and UNI ones:

wBIL(x,y) = exp

(
−‖x− y‖2

h2
s

)
exp

(
−‖v(x)− v(y)‖2

h2
r

)
(4)

This method is based on an average of pixels, where the weights are the product of two terms: the geometric
difference and the photometric difference of two pixel. It is worth noticing that the above filters (GAU, UNI,
BIL) are pixel-based to measure the similarity. Consequently they do not take into account the contextual and
spatial information. To cope with this limitation, Non-Local Means filter (NLM) uses patch-based similarity
approach.5,6 Its kernel is defined as follows:

wNLM (x,y) = exp

(
−Ga ∗ ‖N(x)−N(y)‖2

h2
r

)
(5)

where N(x) is small patch r × r around the pixel x, Ga is a Gaussian kernel with standard deviation a of the
same size as N(x). Note that, the patch-similarity measure is weighted by Ga to give more weight to pixels close
to the patch center. The equation(5) can be rewritten as follows:

wNLM (x,y) = exp

(
−‖Na(x)−Na(y)‖2

h2
r

)
(6)

where the weighted patch Na(x) =
√
GaN(x). Note that NLM considers only intensity information. Table 1

gives a resume of the aforementioned filters



Method GAU UNI BIL NLM
Spatial Neighbors Yes Yes
Range Neighbors Yes Yes Yes

Pixel-based similarity Yes Yes Yes
Patch-based similarity Yes

Table 1. Brief description of filter types

2.2 Closest space VS Closest structure

For NLM method, it has been shown that if the search range Ω is the whole image (non-local approach in strict
sense), not only computational time increases but also the quality of the restored image reduces because many
irrelevant patches are taken into account. The search range should be limited in a small window Ωx = S × S
around the pixel being processed x. In the initial configuration, Buades et al. propose a window of size 21× 21
which results of total 441 patches. Each approach has a weakness and an advantage. The non-local approach can
get more relevant patch but many mismatching patches are considered. On the other hand, the semi non-local
can discard mismatching patch but many relevant patches can not be used. In other work,10 we verify the third
approach which seeks in the whole image, rid of all irrelevant patches and takes into account only the best
matching ones. This approach is called ”closest structure” in the sense that only the best matching ”structure”
patches are considered. The limited search range approach (the original NLM) is called ”closest space” in the
sense that it uses only neighbour patches. Counter intuitively, the closest structure approach yields worse result
in both term of subjective and objective measurement. An example is shown in Figure 1 where the noise still
remains in the case of the closest structure approach. In flat regions, the noise pattern of a given-patch will
match well with that of the best candidates. Averaging these similar noise patterns cannot effectively remove
the noise. We refer to this as ”best-worst paradox” in the sense that if we consider only the best candidates,
the result is the worst. Based on these remarks, the semi non-local approach, i.e. restrained to a small window
Ωx = S × S, is used in this work.

(a) (b)
Figure 1. Best-worst paradox: if we consider only the best matching patches, the result is the worst (a) Result of the
closest space approche with PSNR = 33.85 (b) Result of the closest structure approche with PSNR = 32.75

2.3 Fast Non-Local Means

A fast NLM (FNLM) filter7 is proposed by approximating the distance ‖Na(x)−Na(y)‖2 in (6) by another one
estimated from projections of Na onto a subspace defined by Principal Component Analysis (PCA). It is well

known that the eigenvectors {em}r
2

m=1 (sorted in order of descending eigenvalues) of the covariance matrix M
estimated from a set of all weighted patch Na form an orthonormal basis. Note F(x) = [f1(x), f2(x), ..., fr2(x)]T

is projected vector of Na(x) onto this orthonormal basis, i.e. fm(x) =< Na(x), em > where <,> stands for
inner product. As the signal energy concentrates on a few the most significant d components (d� r2), Tasdizen7

proposes to approximate the norm ‖Na(x)−Na(y)‖2 by using only these d components, i.e.

‖Na(x)−Na(y)‖2 ≈ ‖Fd(x)− Fd(y)‖2 =

d∑
m=1

‖fm(x)− fm(y)‖2 (7)



where Fd(x) = [f1(x), f2(x), ..., fd(x)]T . The new weight is now defined as follows:

wdNLM (x,y) = exp

(
−‖Fd(x)− Fd(y)‖2

h2
r

)
(8)

Finally, the FNLM is given by:

ûd(x) =

∑
y∈Ω w

d
NLM (x,y)v(y)∑

y∈Ω w
d
NLM (x,y)

(9)

where d is a parameter of the algorithm. Recall that when d = r2, FNLM tends to the classical NLM. Indeed,
the use of PCA has twofold: (i) the computational complexity is highly reduced, (ii) patch similarity measure
improves robustness to noise.

In the next sections, we present a new high dimensional space called HDPCA and show that FNLM and
NLM are simply derived from an isotropic filter in this space.

3. PROPOSED METHOD

3.1 High Dimensional PCA-Space

Mapping in the HDPCA-space: First, each small patch is passed through the PCA system to obtain the
corresponding projected vectors Fd. We define D-dimensional HDPCA-space (D = d+2) noted ΨD ∈ RD where
the coordinates p of each point in this space contains both spatial information x = (x1, x2) and all value of Fd.
Precisely, p = [αx1, αx2, f1(x), f2(x), ..., fd(x)] where α ≥ 0 is factor to balance the importance between spatial
and intensity features. By this definition, each patch in the image domain corresponds to a point in the new high
dimensional space. From now, we note p and q as two points in the HDPCA which correspond to two patches
N(x) and N(x), respcetively. Each value V of a point p in this space is defined as follows:

V(p) = (V1(p), V2(p)) = (v(x), 1) (10)

Note that V(p) contains two components:

• The first one V1(p) = v(x) (the gray level of the center pixel x of the patch N(x)).

• The second one V2(p) is always set equal to 1.

Back-projection on the image domain: Instead of filtering directly the pixel value in the image domain,
we alter the multi-values V(p) in the HDPCA-space to obtain Û(p) (the filtering method in this space will be
discussed in the next section). This filtered value is then transformed back onto the image domain as follows:

û(x) =
Û1(p)

Û2(p)
(11)

Note that HDPCA is a sparse space where only points corresponding to the patches of the image are defined.

3.2 Bilateral In High Dimensional PCA-Space

To restore the pixel x, in order to avoid ”best-worst paradox” phenomenon, instead of projecting all patches in
the image domain onto the HDPCA-space, we project only the patches on the sub-domain Ω(x) (small windows
of size 21 × 21 around the being processed pixel x) and carry out the filtering on these projected values. Since
all values in projected vector Fd(x) become spatial coordinates of point p in the HDPCA-space, we can rewrite
equation (9) of FNLM as follows (in the case where α = 0):

ûd(k, l) =
Û1(p)

Û2(p)
=

∑
q∈ΨD

exp
(
−‖p−q‖2

h2
r

)
V1(q)∑

q∈ΨD
exp

(
−‖p−q‖2

h2
r

)
V2(q)

(12)

Note that both nominator and denominator of this equation can be interpreted as Gaussian filter in the HDPCA-
space. Therefore, we can summarize FNLM in the two following steps:



• Step 1: Gaussian filtering in the HDPCA-space

• Step 2: Projection back onto the image space by using the division of two components of the filtered values
(equation (11))

It is worth to notice that the Gaussian filter in the first step is an isotropic filter. Here, we propose to replace it
by an anisotropic one. In the literature, there are many anisotropic diffusion methods such as Total Variation,11

Perona-Malik12 which mimic physical processes by locally diffusing pixel values along the image structure. Since
these methods are local-based, their adaptation to a such sparse HDPCA-space is rather a difficult task. However,
as discussed above, BIL acts as an anisotropic filter and it works in non-local manner therefore it could be used.
The proposed method (called BIL-HD) consists of the two following steps:

• Step 1: Bilateral filtering in the HDPCA-space

• Step 2: Projection back onto the image space by using the division of two components of the filtered values
(equation (11))

In the first step, the filtered values Û(p) are given by:

Ûη(p) =

∑
q∈ΨD

wη(p,q)Vη(q)∑
q∈ΨD

wη(p,q)
(13)

where subscript η = 1, 2, and according to BIL’s principle the weight wη(p,q) is estimated as follows:

wη(p,q) = exp

(
−‖Vη(p)− Vη(q)‖2

h2

)
exp

(
−‖p− q‖2

h2
r

)
(14)

where the first term is an intensity proximity measure and the second one stands for a geometric proximity
measure, h is range parameter in the new HDPCA-space. The filtered values Û(p) are finally projected back
into the image domain using the division in equation (11). Since V2(p) = 1 for all the defined points in the

HDPCA-space (see equation (10)), it is easy to see that the second filtered value Û2(p) = 1 ∀p. Consequently,
the restored value is as follows:

û(x) = Û1(p) =

∑
q∈ΨD

w1(p,q)V1(q)∑
q∈ΨD

w1(p,q)
(15)

From the definition of HDPCA in section 3.1, the weight w1(p,q) can be rewritten as follows:

w1(p,q) = exp

(
−‖v(x)− v(y)‖2

h2

)
exp

(
−‖αx− αy‖2 − ‖Fd(x)− Fd(y)‖2

h2
r

)
(16)

By noting hs = hr/α, equation (16) becomes:

w1(p,q) = exp

(
−‖v(x)− v(y)‖2

h2

)
exp

(
−‖Fd(x)− Fd(y)‖2

h2
r

)
exp

(
−‖x− y‖2

h2
s

)
(17)

From the equation (17), it is easy to see that the proposed method is a generation of all aforementioned filters
(FNLM, NLM, BIL, UNI, GAU). If h =∞, hs =∞ and d < r2 the proposed method becomes the FNLM filter.
If h = ∞, hs = ∞ and d = r2 the proposed method tends to the NLM filter. If hr = ∞, the proposed method
becomes the BIL filter. If hr =∞ and hs =∞, it is the case of the UNI filter. Table 2 gives a resume about the
parameters of all methods.



h hr hs d
GAU h =∞ hr =∞ hs <∞
UNI h <∞ hr =∞ hs =∞
BIL h <∞ hr =∞ hs <∞

NLM h =∞ hr <∞ hs =∞ d = r2

FNLM h =∞ hr <∞ hs <∞ d ≤ r2

BIL-HD h <∞ hr <∞ hs <∞ d ≤ r2

Table 2. Brief description of the parameters of all methods

4. EXPERIMENTAL RESULTS

The experimental results are carried out on several natural images such as Barbara, Lena, Peppers and Finger-
print of size 512 × 512. The last one is typical of highly textured image whereas the third one contains mostly
homogenous regions. The first and second images contain different types of features, texture, sharp edges and
smooth regions. These images are perturbed by additive, independent Gaussian noise at two levels of standard
deviation σ = 10 and σ = 25. The subspace Ωx is defined by small windows 21× 21 around the being processed
pixel x. The patch size is equal to 7×7 which results of full dimension r2 =49. The reduced dimension d is tested
with 11 values: 1, 3, 6, 8, 10, 15, 20, 25, 30, 40, 49. hr is set equal to nhr

σ where nhr
= [0.6 : 0.1 : 1.4] (here

we use Matlab notation), h = nhσ with nh = [2 : 2 : 20,∞] and hs = [1 : 1 : 10,∞]. A comparative evaluation
using both objective and subjective measures has been performed to demonstrate the advantages of the proposed
method over NLM and FNLM filters. To objectively evaluate the results, beside PSNR, we use also two other
metrics namely MAD13 and PSNRW

14 which are based the human visual system (HVS). Note that while small
value of MAD indicates high level of image quality, small value of PSNRW , PSNR corresponds to a low level of
image quality. Only the best results of these methods are reported in Tables 3-10 with the corresponding optimal
parameters d, nh, nhr

and hs. Note that, for each method, each metric results in different optimal parameters.
As can be seen, the proposed method outperforms the others methods for all cases and it is confirmed by all
metrics. It is also worth to note that, in many cases, BIL-HD can achieve better quality with smaller dimension
d compared to FNLM (for example, for Fingerprint image, σ = 10, optimal d for FNLM is 15 whereas in our
case, this value is 6 which makes BIL-HD 2 times faster than FNLM - see table 12). In the case of σ = 25, except
Fingerprint image, the proposed method achieves the best result at full dimension d = 49. Note that for these
cases, if we reduce the d to the that of FNLM, the quality is sightly decreased but still better than FNLM (see
Table 11)

For the subjective comparison, an example of Lena image is presented in Figure 2 and 3 for the case σ = 10
and σ = 25, respectively. As can be seen in the differences between the restored images and the noisy one, the
proposed method almost eliminates only noise whereas NLM and FNLM remove both noise and image details.
(please use your monitor to view all images in this paper). More results can be found in http://www-l2ti.

univ-paris13.fr/~do/spie2011

5. CONCLUSIONS

In this paper, a new anisotropic filtering method in High Dimensional PCA-space is proposed. Through this
study, it has been shown that NLM and FNLM can be expressed as an isotropic filter in this space. A series of
tests has been performed to assess the efficiency of the proposed method. The obtained results demonstrate the
efficiency of the proposed filtering approach objectively and subjectively.
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Metric Method nhr
nh hs d Result

PSNR
NLM 0.8 ∞ 49 34.27

FNLM 0.8 ∞ ∞ 10 34.36
BIL-HD 1.3 6 3 49 34.62

PSNRW

NLM 0.8 ∞ 49 17.39
FNLM 0.7 ∞ ∞ 10 17.55

BIL-HD 0.9 4 5 8 17.82

MAD
NLM 0.8 ∞ ∞ 49 1.66

FNLM 0.7 ∞ ∞ 10 1.59
BIL-HD 0.9 6 6 8 1.40

Table 3. Objective measures of Lena image σ = 10



Metric Method nhr nh hs d Result

PSNR
NLM 0.8 ∞ ∞ 49 29.77

FNLM 0.8 ∞ ∞ 15 29.79
BIL-HD 1 ∞ 4 49 30.38

PSNRW

NLM 0.7 ∞ ∞ 49 12.19
FNLM 0.7 ∞ ∞ 15 12.23

BIL-HD 0.8 ∞ 5 15 12.65

MAD
NLM 0.8 ∞ ∞ 49 7.06

FNLM 0.8 ∞ ∞ 15 7.00
BIL-HD 1 ∞ 5 49 6.03

Table 4. Objective measures of Lena image σ = 25

Metric Method nhr
nh hs d Result

PSNR
NLM 0.9 ∞ ∞ 49 31.00

FNLM 0.9 ∞ ∞ 15 31.22
BIL-HD 1.4 6 1 6 31.74

PSNRW

NLM 0.8 ∞ ∞ 49 19.14
FNLM 0.8 ∞ ∞ 15 19.38

BIL-HD 1.4 6 1 6 19.95

MAD
NLM 0.6 ∞ ∞ 49 0.22

FNLM 0.6 ∞ ∞ 8 0.15
BIL-HD 1 8 2 6 0.09

Table 5. Objective measures of Fingerprint image σ = 10

Metric Method nhr
nh hs d Result

PSNR
NLM 0.8 ∞ ∞ 49 26.60

FNLM 0.6 ∞ ∞ 6 27.44
BIL-HD 0.6 12 ∞ 6 27.45

PSNRW

NLM 0.7 ∞ ∞ 49 13.99
FNLM 0.6 ∞ ∞ 6 14.61

BIL-HD 0.6 8 10 6 14.65

MAD
NLM 0.7 ∞ ∞ 49 2.31

FNLM 0.6 ∞ ∞ 6 1.59
BIL-HD 0.6 10 10 6 1.52

Table 6. Objective measures of Fingerprint image σ = 25

Metric Method nhr nh hs d Result

PSNR
NLM 0.8 ∞ ∞ 49 34.33

FNLM 0.8 ∞ ∞ 10 34.46
BIL-HD 1.2 4 4 6 34.81

PSNRW

NLM 0.7 ∞ ∞ 49 17.77
FNLM 0.7 ∞ ∞ 10 18.00

BIL-HD 1.1 4 4 6 18.41

MAD
NLM 0.7 ∞ ∞ 49 2.32

FNLM 0.7 ∞ ∞ 10 2.15
BIL-HD 1.1 4 5 6 1.87

Table 7. Objective measures of Peppers image σ = 10



Metric Method nhr
nh hs d Result

PSNR
NLM 0.9 ∞ ∞ 49 30.23

FNLM 0.9 ∞ ∞ 15 30.25
BIL-HD 1.1 ∞ 4 49 30.86

PSNRW

NLM 0.7 ∞ ∞ 49 12.78
FNLM 0.7 ∞ ∞ 15 12.89

BIL-HD 0.9 ∞ 5 15 13.49

MAD
NLM 0.8 ∞ ∞ 49 8.15

FNLM 0.8 ∞ ∞ 15 8.03
BIL-HD 1 ∞ 5 49 7.05

Table 8. Objective measures of Peppers image σ = 25

Metric Method nhr nh hs d Result

PSNR
NLM 0.9 ∞ ∞ 49 33.76

FNLM 0.9 ∞ ∞ 20 33.86
BIL-HD 1 6 7 20 34.00

PSNRW

NLM 0.8 ∞ ∞ 49 17.21
FNLM 0.8 ∞ ∞ 20 17.34

BIL-HD 1 6 6 20 17.52

MAD
NLM 0.7 ∞ ∞ 49 1.54

FNLM 0.7 ∞ ∞ 15 1.37
BIL-HD 0.9 8 6 15 1.27

Table 9. Objective measures of Barbara image σ = 10

Metric Method nhr nh hs d Result

PSNR
NLM 0.8 ∞ ∞ 49 28.70

FNLM 0.8 ∞ ∞ 49 28.70
BIL-HD 0.8 ∞ 7 49 28.86

PSNRW

NLM 0.7 ∞ ∞ 49 11.84
FNLM 0.7 ∞ ∞ 49 11.84

BIL-HD 0.8 ∞ 6 49 12.05

MAD
NLM 0.8 ∞ ∞ 49 7.24

FNLM 0.8 ∞ ∞ 49 7.24
BIL-HD 0.9 ∞ 6 49 6.48

Table 10. Objective measures of Barbara image σ = 25



Metric Method nhr
nh hs d Result

Lena σ = 25

PSNR
FNLM (the best) 0.8 ∞ ∞ 15 29.79

BIL-HD (the best) 1 ∞ 4 49 30.38
BIL-HD 1 ∞ 4 15 30.36

MAD
FNLM (the best) 0.8 ∞ ∞ 15 7.00

BIL-HD (the best) 1 ∞ 5 49 6.03
BIL-HD 1 ∞ 5 15 6.05

Peppers σ = 25

PSNR
FNLM (the best) 0.9 ∞ ∞ 15 30.25

BIL-HD (the best) 1.1 ∞ 4 49 30.86
BIL-HD 1.1 ∞ 4 15 30.85

MAD
FNLM (the best) 0.8 ∞ ∞ 15 8.03

BIL-HD (the best) 1 ∞ 5 49 7.05
BIL-HD 1 ∞ 5 15 7.08

Table 11. If we reduce the d to the that of FNLM, the quality of the proposed method is slightly decreased but still better
than FNLM

d 1 3 6 8 10 15 20 25 30 40 49
Time (in second) 9.29 11.04 14.41 17.33 22.65 30.12 41.04 51.46 62.17 84.92 107.2

Table 12. Computational time in function of d (The program is written by C, runs on PC of 2GHz and 2G Ram)

(a) (b) (c)

(d) (e) (f)
Figure 2. Result of Lena image in the case of σ = 10, first line: restored images, second line: difference between restored
image with the noisy one, from left to right: NLM, FNLM and the proposed method



(a) (b) (c)

(d) (e) (f)
Figure 3. Result of Lena image in the case of σ = 25, first line: restored images, second line: difference between restored
image with the noisy one, from left to right: NLM, FNLM and the proposed method
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