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ABSTRACT

This paper presents a novel full-reference Stereo Image Quality
Assessment (SIQA) measure based on well understood characteris-
tics of the human visual system (HVS), namely contrast sensitivity
and frequency and directional selectivity. Additionally, the proposed
metric takes into account the stereo interplay between the two views,
where one view may affect our perception of the overall quality of
the stereo image pair. Therefore, a Binocular Just Noticeable Dif-
ference (BJND) model is used to compute the distortion visibility
threshold, and the binocular suppression theory is considered in the
proposed metric. The scored 3D LIVE IQA database is used to eval-
uate the correlation of the proposed metric with the DMOS subjec-
tive score provided by the database. The obtained experimental re-
sults show that the proposed metric correlates much better with the
DMOS score than the state-of-the-art metrics do.

Index Terms— Stereo image quality assessment, HVS model,
BJND, Binocular suppression.

1. INTRODUCTION

We are witnessing a rapid development of stereo and multi-view
systems and a wide adoption of these systems. Therefore, Stereo-
scopic Image Quality Assessment (SIQA) has become an impor-
tant and challenging problem faced in numerous applications such
as 3D acquisition, stereo visualization, stereo compression and 3D
enhancement. Objective image quality assessment plays an impor-
tant role in many image processing applications. It may serve as a
decision support tool for selecting the algorithm or the system that
provides the best image quality. It may also be embedded in an im-
age processing framework to generate optimal algorithm parameters.
Rate/Distortion optimization approach for image compression is one
of such potential applications where objective image quality plays a
prominent role.

For applications where a human viewer is the ultimate receiver,
the best way to assess the image quality is through a subjective mea-
surement. The perceptual human judgment is frequently expressed
in terms of Mean Opinion Score (MOS). Subjective evaluation how-
ever, is time-consuming, costly, depends upon viewer’s physical con-
dition, emotional state, personal experience, context of preceding
display and thus is highly inconvenient in most applications. In ad-
dition, subjective measures cannot be incorporated into automatic
image processing systems especially for real-time applications. Fur-
thermore, when it comes to stereo images, sometime objective mea-
sures may become unpredictable due to additional human physical
factors related to stereovision such as fatigue and visual discomfort.

Therefore, it is crucial to develop reliable quantitative measures that
can gauge automatically the perceived image quality. The robust-
ness of such measures is evaluated by how well they correlate with
human observers’ judgment.

Many Image Quality Assessment (IQA) metrics have been pro-
posed for 2D image to quantify objectively the image quality. Ex-
isting methods can be roughly classified into three categories, i.e.
full-reference (FR), reduced-reference (RR) and no-reference (NR)
metrics. FR approaches need a complete reference image, while RR
ones need only parts (or features) of the reference image. The NR
ones do not require any information about the original image and are
typically designed for specific distortions, for more details reader
may refer to the survey in [1]. It is worth noting that this classifi-
cation is also valid for stereoscopic 3D images. In order to develop
good objective perceptual stereo quality metrics, it is paramount to
understand the human perception of 3D quality. Human perception
of 3D image quality differs from that of the 2D quality perception
because additional binocular cues have to be considered in the 3D
case. The most important one is the depth perception and how it
contributes to the overall perceived 3D image quality.

The objective of this paper is to design a FR metric based on
human visual perception findings, especially contrast masking ef-
fect [2], and Binocular Just Noticeable Difference (BJND) [3]. Fur-
thermore, in this work the binocular suppression is modelled and
incorporated into the proposed metric.

The rest of this paper is organized as follows. In section 2, we
start by a brief review of SIQA state-of-the-art. Section 3 gives an
overview of the BJND model. Section 4 describes the proposed
metric. In section 5, we present the experimental results. Finally,
conclusions and possible further research directions are presented in
section 6.

2. SIQA STATE-OF-THE-ART

In the literature many efforts have been devoted to designing SIQA
metrics [4–14]. In [4], the authors studied the use of some well-
known 2D objective metrics for quality assessment of stereo images.
Their study consisted in combining the two scores for the right and
the left images using three approaches, i.e., average, main eye and
visual acuity. No information about the depth perception was taken
into account however. Benoit et al. [5] proposed a metric combin-
ing two measures. The first one is the difference between original
(left or right) and distorted image. The second is the difference
between disparity maps before and after applying distortion to the
stereo pair. For the combination operation, both global and local ap-
proaches were proposed. A similar approach was adopted by You et
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al. [7], who investigated the combination of eleven 2D image quality
metrics with the disparity distortion. Thus these metrics depended
on the disparity estimation method and its robustness against dis-
tortion. In [8] a metric based on the matching of regions with high
spatial frequency in the left and right views is proposed for evaluat-
ing the quality of compressed images. In [9], Sazzad et al. proposed
a NR metric for JPEG coded stereoscopic images based on local fea-
tures, i.e. blockiness and zero-crossing within the edge area, flat and
texture as well as disparity information of plane and non-plane ar-
eas. A stereo sense assessment metric (SSA) based on the disparity
distribution has been proposed in [11], where only absolute disparity
was used. In [12], authors proposed a perceptual model consisting
of wavelet-based perceptual decomposition and contrast conversion
and masking. Hewage et al. [13] proposed RR quality metric for
depth map transmission based on edge detection. In [14], authors
proposed metric based on the computation of the cyclopean images
of the reference and distorted pairs. The properties of the HVS are
integrated in the metric by performing a Contrast Sensitivity Func-
tion (CSF) filtering of the cyclop images after a wavelet decompo-
sition and rational thresholding to obtain the sensitivity coefficients.
The metric is the average of disparities coherence and perceptual
difference between the reference and distorted cyclop images.

3. BJND MODEL

The BJND model measures the perceptible distortion threshold of
binocular vision for stereoscopic images. In [3], it has been demon-
strated, through many psychophysical experiments, that the BJND
depends on two of the HVS characteristics: luminance adaptation
and binocular contrast masking. Given the left and right images the
BJND at the left view, i.e., BJNDl, is defined as follows [3]:

BJNDl(i, j, dl) = AC(bgr(i− dl, j), ehr(i− dl, j))

× (1− (
nr(i− dl, j)

AC(bgr(i− dl, j), ehr(i− dl, j))
)λ)

1
λ , (1)

where AC is the elevated threshold function due to the contrast
masking effect, dl is the disparity value at pixel coordinate (i, j),
note that the parallel camera model is assumed here, thus the dispar-
ity value represents the horizontal displacement of the pixel from left
to right views. The exponent λ allows adjusting the noise influence
in the right view, and according to the psychophysical experiment it
is set to 1.25. We note that the BJNDl depends on the background
luminance level bgr , the edge height ehr and the noise amplitude nr
of the corresponding pixel in the right view. For a noise-free view
the BJNDl is reduced to the AC term defined as follows:

AC(bg, eh) = Alimit(bg) +B(bg).eh (2)

The Alimit and B functions are derived using psychophysical ex-
periment and defined as follows :

Alimit(bg) =

{
0.0027(bg2-96bg)+8 if 0 ≤ bg < 48,

0.0001(bg2-32bg)+1.7 if 48 ≤ bg ≤ 255,
(3)

B(bg) = −10−6(0.7bg2 + 32bg) + 0.07. (4)

The background luminance bg is computed by averaging the lumi-
nance values over a 5×5 window centred at the corresponding pixel
position and the edge height eh is given by the 5×5 Sobel operators
as follows:

eh(i, j) =
√
E2
H(i, j) + E2

V (i, j), (5)

Ek(i, j) =
1

24

5∑
h=1

5∑
v=1

I(i− 3 + h, j − 3 + v).Gk(h, v), (6)

where k ∈ {H,V }, I(i, j) denotes the luminance value at (i, j) and

GH =


-1 -2 0 2 1
-2 -3 0 3 2
-3 -5 0 5 3
-2 -3 0 3 2
-1 -2 0 2 1

 , GV =


1 2 3 2 1
2 3 5 3 2
0 0 0 0 0
-2 -3 -5 -3 -2
-1 -2 -3 -2 -1

 .

4. THE PROPOSED METRIC

The proposed metric is based on the fact that, the degradation is
perceived only when it yields a change above the binocular visibil-
ity threshold. It is also sensitive to the influence of one view on
the perception of the other (binocular suppression), i.e. a high con-
trasted area in one view may mask the visibility of degradation in the
corresponding region in the other view. The proposed stereo image
quality prediction model is composed of three stages. First, per-
ceptual images of original and degraded stereo pairs are computed.
Second, the BJNDs for both reference and distorted stereo pairs are
estimated. Finally, a pooling step to model the global distortion met-
ric is performed.

The first stage aims at computing a perceptual representation for
each view of reference and degraded stereo pairs. The proposed al-
gorithm builds on the work done by Daly [2]. For each viewE×F+1
images are built as follows:

me,f (i, j) = F−1(F(I)(u, v).CSF(u, v).Cortexe,f (u, v)),

mE(i, j) = F−1(F(I)(u, v).CSF(u, v).base(u, v)), (7)

where I is the input luminance image processed by the amplitude
non-linearity because perception of lightness is a nonlinear function
of luminance, CSF is the 2D contrast sensitivity function, Cortexe,f
is the (e, f) cortex band, base is the lowest frequency filter and F
stands for the Fourier transform.

The CSF describes the variation of visual sensitivity as a func-
tion of spatial frequencies and the Cortexe,f describes a band de-
composition filter where e is the radial and f is the orientation fre-
quencies indexes, e ∈ {0, .., E − 1} and f ∈ {0, .., F − 1} (E
and F are respectively the number of radial bands and the number of
orientations). These two terms of the perceptual representation ac-
count for the frequency and directional selectivity of the HVS. More
details on the models used for amplitude non-linearity, the CSF and
the Cortex could be found in [2].

Let A be a filter set including cortex band filters and the base
band filter. Once the filtering process done, we compute for each
filter α the local variation of the differential visibility threshold ele-
vation defined by the following equation:

m̃α(i, j) = (1 + (k1(k2|mα(i, j)|)s)b)
1
b , (8)

where k1 = 0.0153, k2 = 392.5, b = 4 and s ∈ [0.6, 1]. Finally,
we define the resulting perceptual image by retaining the maximum
visibility value of each pixel, i.e. the output image is defined as
follows:

m(i, j) = max(m̃α(i, j))α∈A. (9)

The next step is the BJND model computation, which is an im-
portant task in the proposed algorithm. The BJND models of the
reference and distorted stereo pairs are computed after disparity es-
timation. Disparity estimation determines the pixel displacement be-
tween the two views of a stereo pair. In our implementation, dispar-
ity map can be estimated using one of the different methods, based
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on the Markov Random Field (MRF) model [15], provided by the
software available in [16].

Before deriving the final stereo quality metric, pixels in the ref-
erence stereo pair and their corresponding pixels in the degraded one
are segmented into four disjoint classes for each view, Ov , Tv , Sv
and Rv , v ∈ {left, right}. In the following, left and right views are
referred to l and r and ṽ refers to a degraded view.

• Occlusion class (Ol): contains occluded pixels in the left
view, identified by a zero disparity value and/or correponds
to the overflowed disparity-shifted pixels.

• Invisible distortion class (Tl): contains non-occluded pixels
having luminance distortion lower than its visibility threshold
BJNDl in which the change is detected by the majority of
observers (threshold visibility criteria).

• Binocular suppression class (Sl): pixels belonging to this
class are non-occluded and satisfy the binocular suppression
criteria. First, the local contrast around a left view degraded
pixel should be higher than its corresponding pixel in the de-
graded right view (left to right local contrast comparison cri-
teria). Second, the inter-difference between the two views at
this pixel should be less than the visibility threshold BJNDl̃ of
the degraded left view. Pixels should not satisfy the threshold
visibility criteria.

• Binocular rivalry class (Rl): contains non-occluded pixels
satisfying the left to right local contrast comparison criteria
and the inter-difference between the two views at these pixels
exceed the visibility threshold BJNDl̃. The threshold visibil-
ity criteria is not respected for this class.

Mathematically, Ov , Tv , Sv andRv are defined as follows:

Ol = {(i, j) ∈ l, dl(i, j) = 0} ∪ {(i, j) ∈ l, i-dl < 0},

Tl = {(i, j) ∈ Ōl,
∑

(p,q)∈B
|Il(p, q)-Il̃(p, q)| <

∑
(p,q)∈B

BJNDl(p, q)

︸ ︷︷ ︸
threshold visibility criteria

},

Sl = Ōl ∩ T̄l ∩ Cl ∩ Il, Rl = Ōl ∩ T̄l ∩ Cl ∩ Īl

Cl = {(i, j) ∈ l,
∑

(p,q)∈B
Cl̃(p, q) >

∑
(p,q)∈B

Cr̃(p-dl, q)

︸ ︷︷ ︸
left to right local contrast comparison criteria

},

Il = {(i, j) ∈ Ōl,
∑

(p,q)∈B
|Il̃(p, q)-Ir̃(p-dl, q)| <

∑
(p,q)∈B

BJNDl̃(p, q)

︸ ︷︷ ︸
Inter-difference threshold visibility criteria

},

where Cv, v ∈ {l̃, r̃} is the local contrast computed as in [17],
B is a square block of size ω × ω centered at pixel (i, j) (occluded
pixels are not considered), dl is the disparity value at (i, j) of the left
view. dr , Or , Tr , Sr , Rr , Ir and Cr are defined in similar fashion
by substituting l by r and the horizontal pixel position is positive
shifted, i.e. i + dr . Note that i + dr should be less than the image
width size, otherwise, pixel at (i, j) position of the right view is
considered as occluded right.

The inter-difference threshold visibility and the side-to-side lo-
cal contrast comparison can model the binocular suppression theory
due to the fact that local high contrasted area in one side tends to
suppress those in the other side with low contrast. If the inter-view

distortion is visible, i.e., it exceeds the BJND, binocular rivalry may
occur.

Finally, the stereo quality metric is derived as following:

SM =

√
1

N

∑
(i,j)∈{l}∪{r}

sm(i, j), (10)

where N is the cardinality of Ol ∪ Or ∪ Cl ∪ Cr , and

sm(i, j) =



∆ml(i, j)
2 if (i, j) ∈ Ol ∪ Sl,

∆mr(i, j)
2 if (i, j) ∈ Or ∪ Sr,

∆ml(i,j)
2+∆mr(i-dl,j)

2

2
if (i, j) ∈ Rl,

∆ml(i+dr,j)
2+∆mr(i,j)2

2
if (i, j) ∈ Rr,

0 if (i, j) ∈ Tl ∪ Tr,

(11)

where ∆mv = mv − mṽ , v ∈ {l, r}. If the pixel is occluded, it
means that, it belongs only to one of the two views. Thus sm(i, j)
is computed based on one-side distortion. For the binocular sup-
pression category, the pixel degradation in one view is masked by
pixels in the other view. Only the distortion of pixels that mask their
corresponding pixels in the other view will be considered. When
binocular rivalry occurs, observers can see two different intensities
in shutter way of the same 3D point. Hence, the average of the pixel
distortions in the two views is calculated.

5. EXPERIMENTAL RESULTS

The performance of the proposed metric is evaluated using the
scored LIVE 3D IQA database (phase I) [18]. The symmetric dis-
tortions that were simulated are compression using the JPEG and
JP2K compression encoders, additive white Gaussian noise (WN),
Gaussian blur and a fast-fading (FF) modeled based on the Rayleigh
fading channel. Twenty reference stereo pairs were distorted sym-
metrically using the five different distortions mentioned above. With
a total of 365 distorted stereo pairs (80 for each distortion except
for blur we used only 45 pairs). For the WN distortion, the noise
amplitude is estimated using the difference between the original and
the degraded images. For the four other distortions and the original
views; we assume that images are noise free. The subjective quality
evaluation of the stereo image pairs in the database is followed by
an objective evaluation using several state-of-the-art SIQA met-
rics [5–8,10,12,13]. The DMOS vs the objective scores obtained by
the proposed algorithm are shown in Fig. 1.

Three measures are used to evaluate the performance of the pro-
posed metric. The Spearman’s rank ordered correlation coefficient
(SROCC), the linear (Pearson’s) rank ordered correlation coefficient
(LCC) and the Root-Mean-Squared Error (RMSE) are computed be-
tween DMOS and algorithm score DMOSo after nonlinear regres-
sion. The non-linearity chosen for regression was a five-parameter
logistic function defined in [19] as follows:

DMOSo(x) = β1(
1

2
− 1

1 + eβ2(x−β3)
) + β4x+ β5. (12)

Each view in the database is converted into the YCbCr color
space, which is widely used in image and video compression and
processing. Furthermore, since the HVS is more sensitive to the lu-
minance variations, only the Y component is used in the proposed
metric. We fixed s to 1, ω to 15 and the graph-cut model [20] is used
to estimate the disparity maps. It is worth noting that the disparity
estimation model and the fixed s and ω values do not give optimal
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Fig. 1: DMOS vs objective score.

Algorithm JP2K JPEG WN Blur FF All

Our metric 0.9170 0.6595 0.9408 0.9503 0.7745 0.9251
Benoit [5] 0.9103 0.6028 0.9292 0.9308 0.6989 0.8992

Hewage [13] 0.8558 0.5001 0.8963 0.6900 0.5447 0.8140
You [7] 0.8598 0.4388 0.9395 0.8822 0.5883 0.8789

Gorley [8] 0.4203 0.0152 0.7408 0.7498 0.3663 0.1419
Shen [10] 0.2133 0.2440 0.8917 0.6586 0.2665 0.0679
Yang [11] 0.1501 0.1328 0.8471 0.3266 0.1426 0.0785
Zhu [12] 0.7708 0.2929 0.4651 0.7935 0.4752 0.6388

Akhter [6] 0.8657 0.6754 0.9137 0.5549 0.6393 0.3827

Table 1: Spearman’s Rank Ordered Correlation Coefficient
(SROCC).

performance results. Therefore, there is still room for improvement
over the obtained results by optimizing the s, ω and disparity esti-
mation.

Tables 1, 2 and 3 correspond to the performance of the proposed
SIQA algorithm evaluated on the 3D LIVE IQA database. These
results show that the proposed metric has better performance than
the state-of-art metrics, when considering the whole database. They
show also the good performance of our metric for the considered
distortions. Our metric outperforms all the others considered except
Akhter’s metric for JPEG distortion, because the latter is specifically
designed for this kind of distortion.

According to the study done in [18], 2D IQA algorithms cor-
relate well with subjective scores when used for stereo image pairs
evaluation. 3D algorithms, including our metric, do not improve
the performance however. This observation is based on the nature
of the 3D LIVE IQA database that contains only symmetric distor-
tions. 2D IQA algorithms may fail in the case of asymmetric distor-
tion when coding artefacts are different in the two decoded views.
Semantically, if we consider the following case of asymmetric dis-
tortion, where the left view is kept unchanged and the right one is
blurred. The 2D algorithms predict the quality by averaging the two
obtained scores for the two views, hence, the predicted scores of
perceived distortion depend only on the distorted level of the right
image, and increase as its level of degradation increases. On the
contrary, the proposed 3D metric has a different behaviour and the
predicted quality depends on the high quality view and on the binoc-

Algorithm JP2K JPEG WN Blur FF All

Our metric 0.9402 0.6565 0.9502 0.9624 0.8472 0.9341
Benoit [5] 0.9398 0.6405 0.9253 0.9488 0.7472 0.9025

Hewage [13] 0.9043 0.5305 0.8955 0.7984 0.6698 0.8303
You [7] 0.8778 0.4874 0.9412 0.9198 0.7300 0.8814

Gorley [8] 0.4853 0.3124 0.7961 0.8527 0.3648 0.4511
Shen [10] 0.5039 0.3899 0.8988 0.6846 0.4830 0.5743
Yang [11] 0.2012 0.2738 0.8701 0.6261 0.2824 0.3909
Zhu [12] 0.8073 0.3790 0.5178 0.7770 0.5038 0.6263

Akhter [6] 0.9059 0.7294 0.9047 0.6177 0.6603 0.4270

Table 2: Linear Correlation Coefficient (LCC).

Algorithm JP2K JPEG WN Blur FF All

Our metric 4.4108 4.9327 5.1861 3.9315 6.6013 5.8546
Benoit [5] 4.4266 5.0220 6.3076 4.5714 8.2578 7.0617

Hewage [13] 5.5300 5.5431 7.4056 8.7480 9.2263 9.1393
You [7] 6.2066 5.7097 5.6216 5.6798 8.4923 7.7463

Gorley [8] 11.323 6.2119 10.197 7.5622 11.569 14.635
Shen [10] 12.275 6.0216 7.2939 10.554 10.882 13.547
Yang [11] 12.697 6.2894 8.2002 12.129 11.946 15.248
Zhu [12] 7.6813 6.0684 14.720 9.1270 10.736 12.782

Akhter [6] 5.4836 4.4736 7.0929 11.387 9.3321 14.827

Table 3: Root-mean-squared-error (RMSE).

ular suppression criteria. Therefore, the proposed metric may give
better performance over asymmetric databases.

6. CONCLUSIONS AND FUTURE WORKS

We have proposed in this paper a novel metric for objective stereo
image quality assessment. The metric is designed based on HVS
modeling by exploiting the CSF and multichannel decomposition
using cortex filters to derive perceptual views. Additionally, the pro-
posed metric makes use of the BJND model to compute the just no-
ticeable distortion within each view of the reference stereo pair. The
BJND model was also used to model the binocular suppression the-
ory. The experimental results show that the proposed metric corre-
lates better with subjective scores than the state-of-the-art methods,
at the cost of increased complexity. The experiment is performed us-
ing the 3D LIVE IQA database, which contains only symmetrically
distorted images. In this work the designed metric does not take into
account the disparity distortion. In future works, the proposed met-
ric will be tested using other databases, especially those containing
both asymmetric and symmetric distortions. We will also, incorpo-
rate in the metric a second term to consider the disparity artefacts.
Furthermore, other models will be considered for the HVS to reduce
the complexity of the algorithm.
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