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ABSTRACT

Many research works have been developed for stereo image com-

pression purpose where most of them aims at encoding a reference

image, a residual one and a disparity map. While the disparity field is

often losslessly encoded, we are mainly interested in this paper in the

bit allocation problem between the reference and residual images.

Generally, the bit allocation is expressed as an optimization problem

which involves the computation of the operational rate-distortion (R-

D) functions for all the wavelet subbands and for different quanti-

zation steps. However, this strategy is computationally intensive.

To solve this problem, we consider the uniform scalar quantization

of the wavelet subbands of both images modeled by a Generalized

Gaussian distribution. Thanks to recent approximations of the en-

tropy and distortion functions, we develop an optimal and fast bit

allocation method. The obtained results confirm the efficiency of the

proposed bit allocation method in the context of stereo image coding.

Index Terms— Stereo image, compression, bit allocation,

wavelets, rate-distortion.

1. INTRODUCTION

The demand for 3D sensors and display technologies has been

increasing in different emerging applications such as 3D TV, 3D

Digital cinema, immersive games and video conferencing [1]. In-

deed, a promising way of providing a realistic 3D imaging is to use

the stereoscopic approaches. The basic idea behind a stereoscopic

imaging system consists of generating two views, called left and

right images, by recording two slightly different views angles of

the same scene. Thus, the price of adding the third dimension to

the viewer/player is the doubling of the image data size compared

to the monoscopic case. Therefore, it becomes necessary to design

efficient stereo compression techniques for storing and transmitting

the involved huge amounts of data.

To this end, different approaches have been developed over the last

decades since the pioneer work of Lukacs [2]. Intuitively, the sim-

plest way for compressing stereo image is the independent coding

scheme where the left and right images are encoded separately by

using existing still image coders. However, since these images cor-

respond to the same scene and so present similar visual contents, it

has been shown that more efficient joint coding schemes can be de-

veloped by taking into account the inter-image redundancies. More

precisely, the common idea behind most of the existing methods

involves the following steps [2, 3]. Firstly, one image (for example

the left one) is selected as a reference image. After that, the dis-

parity map, representing the displacement field between the pixels

of the right and left images, is often estimated using a block-based

approach. Then, the right view, referred to as target image, is pre-

dicted from the reference one using the estimated disparity map, and

the difference between the original target image and the predicted

one, called residual image, is generated. Finally, the reference and

residual images as well as the disparity map are encoded. While the

disparity map is often losslessly encoded using a DPCM technique,

the reference and residual images can be encoded in different trans-

form domains [4–7].

While these steps have been commonly used in most of the devel-

oped works, the main differences between these works is related to

the three following issues. Indeed, the first category of works aim

at proposing a sophisticated Disparity Estimation/Compensation

(DE/DC) methods [8,9]. The second one gives more attention to the

choice of the transformations applied to the images. Among them,

we mention the Discrete Cosine Transform [4, 5] and the Discrete

Wavelet Transform [6, 7]. Finally, the third category focuses on the

entropy coding of the transformed coefficients [10]. However, the bit

allocation issue for stereo image coding has rarely been addressed

in the literature. Generally, the bit allocation process is based on

Rate-Distortion (R-D) theory and aims at minimizing the distortion

subject to a constraint on the available bitrate. We should note here

that the problem of bit allocation has already been investigated in

image and video compression standards [11]. Moreover, this prob-

lem has been studied in the context of Multi-view image coding in a

depth-image-based-rendering framework [12, 13]. In the context of

stereo image coding, there is only few research works devoted to bit

allocation between the two views. Among them, Woo and Ortega

proposed in [14] a dependent bit allocation scheme between the

left and residual images by using dynamic programming technique.

However, in most of the developed stereo image coding schemes, the

bit allocation problem is often solved by resorting to an empirical

approach. In other words, for a given budget of bits, the reference

and residual images are firstly encoded/decoded at different possible

couple of bitrates. Then, the configuration yielding the minimum

distortion value is retained as the optimal solution. However, such

strategy of bit allocation is computationally intensive.

The objective of this paper is to design an efficient bit alloca-

tion technique for optimal stereo image coding. More specifically,

thanks to recent approximation formulas of the entropy and distor-

tion functions [15] and based on the Lagrangian optimization tool,

explicit expression of the system of equations that satisfies the La-

grangian multiplier can be derived, which allows us to obtain a fast

and accurate bit allocation strategy.

The remainder of this paper is organized as follows. In Section 2,

we present the source and quantization models adopted in this work.

Then, the proposed bit allocation method is described in Section 3.

Finally, the efficiency of the proposed method in terms of rate-

distortion criterion is shown in Section 4 and some conclusions are

drawn in Section 5.



2. SOURCE AND QUANTIZATION MODELS

Let I(l) and I(e) be the reference and residual images to be en-

coded. This is achieved by applying a wavelet transform which has

been retained in the most recent compression techniques such as the

JPEG2000 standard [16]. Thus, the sources to be quantized corre-

spond to the J subbands of the left and residual images denoted by

I
(l)
j and I

(e)
j with j ∈ {1, . . . , J}. Therefore, for a given subband j,

the resulting wavelet coefficients can be well modeled by a General-

ized Gaussian (GG) distribution whose probability density function

is defined by:

∀ξ ∈ R, f̃
(v)
j (ξ) =

β
(v)
j (ω

(v)
j )1/β

(v)
j

2Γ(1/β
(v)
j )

e−ω
(v)
j
|ξ|

β
(v)
j

(1)

where the superscript v ∈ {l, e} is used to distinguish between the

left view and the residual one, Γ is the gamma function, ω
(v)
j and

β
(v)
j are respectively the scale and shape parameters which can be es-

timated using the method of moments or maximum likelihood tech-

niques [17].

During the quantization procedure, a uniform scalar quantizer with a

quantization step q
(v)
j and a deadzone of size (2τ

(v)
j − 1)q

(v)
j where

τ
(v)
j > 1

2
, is employed to quantize all the wavelet subbands I

(l)
j and

I
(e)
j . Note that such a quantizer is often used in wavelet-based im-

age compression schemes [16]. Thus, for each input coefficient, I
(v)
j,s

where s denotes the spatial position, the output of the quantizer I
(v)
j,s

is expressed as
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where the reconstruction levels are given by

∀i ≥ 1, r
(v)
i,j = −r

(v)
−i,j = (τ

(v)
j + i− 1)q

(v)
j (3)

Based on these source and quantization models, we address in what

follows the bit allocation problem for encoding the quantized coeffi-

cients of the left and residual images.

3. PROPOSED BIT ALLOCATION METHOD

The proposed bit allocation method is based on the study of the rate

and distortion functions. For this reason, we will firstly present ac-

curate approximations of these functions for a quantized GG source.

3.1. Rate and distortion approximation

As generally considered in the design of R-D algorithms, we ap-

proximate the bitrate of the sources by a zero-order entropy of the

quantized coefficients [18]. Thus, by assuming that the wavelet

coefficients are modeled by a GG distribution, and based on re-

cent approximation of the entropy of a quantized GG random vari-

able [15], the entropy of the quantized subbands I
(l)
j and I

(e)
j , de-

noted respectively by H
(l)
j and H

(e)
j , can be approximated as fol-

lows: ∀v ∈ {l, e},

H
(v)
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where p
(v)
0,j , p

(v)
1,j are the probabilities of the zero and the r

(v)
1,j recon-

struction levels [15] respectively, h
β
(v)
j

is the differential entropy of

a GG distribution [19] and Qa with a ∈ R
∗
+ is the normalized in-

complete Gamma function:

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0

θa−1e−θdθ. (5)

Once the entropy is defined, the distortion function is evaluated

through the pj-th order moment of the quantization error. Here,

we retain pj = 2 which represents the standard mean square error.

While the distortion of a quantized GG random variable is given

in [15] for a general order moment greater than or equal to 1 (i.e

pj ≥ 1), the quadratic distortion (i.e pj = 2) of the quantized left

and residual subbands, D
(l)
j and D

(e)
j , becomes: ∀v ∈ {l, e},
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3.2. Bit allocation approach

In order to solve the inter-view bit allocation problem, our objective

consists of finding the entropy values of the different subbands H

=
(
H

(l)
1 , . . ., H

(l)
J , H

(e)
1 , . . ., H

(e)
J

)
∈ (R+)

2J
minimizing the

average distortion subject to the constraint that the total bitrate is

smaller than or equal to a given bitrate Rmax:

min
J∑

j=1

(
ρ
(l)
j D

(l)
j (H

(l)
j ) + ρ

(e)
j D

(e)
j (H

(e)
j )

)

subject to

J∑

j=1

sj
(
H

(l)
j +H

(e)
j

)
+R(d) ≤ Rmax, (7)

where R(d) is the required bitrate for encoding losslessly the dis-

parity map, sj corresponds to the fraction of total coefficients in the

jth subband, and (ρ
(l)
j , ρ

(e)
j ) ∈ ]0,+∞[2 are two weights which



account for the nonorthogonality of the wavelet transform. An ap-

propriate choice of the weights (ρ
(l)
j , ρ

(e)
j )1≤j≤J allows a good ap-

proximation of the distortion in the spatial domain.

The constrained minimization problem (7) is solved using the stan-

dard Lagrangian optimization technique. For any Lagrangian mul-

tiplier λ < 0, the Lagrangian functional J̃ (H, λ) is expressed as:

J̃ (H, λ) =

J∑

j=1

(
ρ
(l)
j D

(l)
j (H

(l)
j ) + ρ

(e)
j D

(e)
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(e)
j )

)

− λ
( J∑

j=1

sj(H
(l)
j +H

(e)
j ) +R(d) −Rmax

)
, (8)

Under the assumption of the differentiability, and after imposing the

zero gradient condition, we find that the optimal entropy values are

solutions of the following system:

∀ j ∈ {1, . . . , J},





ρ
(l)
j

sj

∂D
(l)
j

∂H
(l)
j

= λ

ρ
(e)
j

sj

∂D
(e)
j

∂H
(e)
j

= λ
(9)

This equation shows that the optimal entropies correspond to the

points having the same slope λ on the R-D curves, (H
(l)
j ,

ρ
(l)
j

sj
D

(l)
j )

and (H
(e)
j ,

ρ
(e)
j

sj
D

(e)
j ), of both the left and residual images. Thus,

it becomes necessary to compute the R-D curves of the different

subbands. This step may be computationally heavy since a larger

number of R-D operating points, that range from low to high bitrate,

must be computed. However, it can lead to irregular functions which

are neither convex nor differentiable. To deal with these problems,

it has been proposed recently to perform the computation for a small

number of R-D points belonging to the same convex hull, followed

by a smooth spline interpolation [20].

Thanks to the developed R-D approximation, we propose in this pa-

per to exploit the theoretical R-D approximations in order to avoid

the interpolation and fitting procedures. Since the rate and distortion

functions are expressed with respect to the quantization step q
(v)
j ,

Eq. (9) can be rewritten as:

∀ j ∈ {1, . . . , J},


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where, for each v ∈ {l, e}, the explicit expressions of the derivatives

of D
(v)
j and H

(v)
j with respect to q

(v)
j can be easily derived from (4)

and (6). Thus, for a given value λ, the quantization steps q
(l)
j (λ) and

q
(e)
j (λ) for the left and residual images can be obtained from (10).

Finally, the rate allocation problem is solved by finding the optimal

slope value λ∗ that satisfies:
J∑

j=1

sj
(
H

(l)
j (q

(l)
j (λ∗)) +H

(e)
j (q

(e)
j (λ∗))

)
= Rmax −R(d)

(11)

Simple algorithms such as Newton and bisection methods can be re-

tained to find the optimal value λ∗. These algorithms converge in

few iterations to the optimal solution if and only if the R-D curves

are both convex and differentiable.

For this reason, it becomes necessary to check the convexity of the

R-D curves resulting from our theoretical approximations of the rate

and distortion functions given by (4) and (6). To this end, many ex-

periments have been carried out on a large data set of stereo images.

It is worth pointing out that the convexity property has been often

satisfied for the most wavelet subbands, as it can be seen in the left

side of Fig. 1. However, we have observed that it is not the case for

some subbands. For example, the right side of Fig. 1 shows a partic-

ular case where
∂Dj

∂Hj
is a non monotonic function. To deal with this
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Fig. 1: In the top side (resp. bottom side), the first derivative function
∂Dj

∂Hj
versus log2(qj) (resp. Hj) obtained with (left side): βj = 0.5

and ωj = 0.1, (right side): βj = 1.5 and ωj = 0.1.

problem, we have determined the inflexion point q̄
(v)
j of the curve

by solving this equation:

∂2D
(v)
j

∂2H
(v)
j

= 0 ⇔
∂2D

(v)
j

∂2q
(v)
j

∂H
(v)
j

∂q
(v)
j

−
∂2H

(v)
j

∂2q
(v)
j

∂D
(v)
j

∂q
(v)
j

= 0, (12)

In this case, during the determination of q
(l)
j (λ) and q

(e)
j (λ) that

satisfy Eq. (10), we are restricted to the search interval ]0, q̄
(v)
j ] with

v ∈ {l, e}. It is important to note that, in this interval, we have

observed that the possible entropy values range from low to high

bitrate as shown in Fig. 1(d), which could not affect the optimality

of the bit allocation method.

4. EXPERIMENTAL RESULTS

In order to evaluate the proposed bit allocation algorithm, we used

different standard stereo images downloaded from some public stere-

ovision datasets 1 and 2, 3. The disparity map is estimated based on

the block-matching technique with a 8× 8 block size, and then loss-

lessly encoded by using an arithmetic coder. The 9/7 wavelet trans-

form, selected for the lossy compression mode of JPEG2000 [16],

1http://vision.middlebury.edu/stereo/
2http://vasc.ri.cmu.edu/idb/html/stereo/index.html
3http://vasc.ri.cmu.edu/idb/html/jisct/



has been retained to encode the reference and residual images. This

decomposition is carried out over three resolution levels and the

resulting wavelet coefficients have been encoded by using the en-

tropy coder EBCOT. Note that the weights (ρ
(l)
j , ρ

(e)
j )1≤j≤J for the

wavelet subbands of the reference and residual images are computed

by using the procedure described in [21].

The accuracy and the efficiency of the proposed bit allocation

scheme is evaluated and compared with the optimal allocation strat-

egy which is often used in the reported stereo image compression

works. This strategy, denoted in the following by “Exhaustive

search”, considers firstly several configurations of rate allocation

(R(l), R(e)), where R(l) + R(e) = Rmax − R(d), and R(l), R(e)

and R(d) denote the bitrate of the left image, residual one and the

disparity map, respectively. Then, the best solution corresponds to

the couple (R(l), R(e)) leading to the minimum distortion evaluated

through the Mean Square Error of the left image MSE(l) and the

right one MSE(r) obtained after the decoding process. We have also

tested another approach based on a prior given rate allocation. More

precisely, 50% of the available bitrate is assigned to each view.

In the following, this strategy will be designated by “Fixed”. The

reported results are given in terms of the average bitrate Rav and its

corresponding PSNR measure:

Rav =
R(l) +R(e) +R(d)

2
, (13)

PSNR = 10 log10
2552

(MSE(l) + MSE(r))/2
, (14)

Figure 2 illustrates the performance of the different considered bit

allocation methods. It is clear that the R-D results of the fixed rate

allocation strategy depends on the stereo data and leads to worse

coding performance. Moreover, it can be noticed that the R-D

curves obtained by the proposed method are very close to those re-

sulting from the optimal allocation method based on the exhaustive

search procedure.

For more convenience, we have also compared our proposed method

to the exhaustive search one in terms of Bjontegaard metric, often

used to measure the distance between two R-D curves [22]. The

PSNR differences and the bitrate saving between these two ap-

proaches are provided in Table 1 for low, middle and high bitrates

corresponding to the four target bitrate points {0.15, 0.2, 0.3, 0.4},

{0.5, 0.6, 0.7, 0.8} and {0.9, 1, 1.1, 1.2} bpp, respectively. This

table shows that the average of the PSNR differences between the

R-D results are about 0.1−0.14 dB.

While achieving R-D performance similar to that obtained with the

exhaustive search allocation strategy, our proposed method reduces

significantly the required execution time, as shown in Table 2. The

simulations are carried out by using an Intel Core 2 (3.2 GHz) com-

puter with a Matlab implementation. It can be observed that the

exhaustive search method is too computationally expensive whereas

our proposed bit allocation method takes only few seconds. Accord-

ing to Table 2, the proposed method is about twenty times faster

than the exhaustive search one.

5. CONCLUSION

In this work, we have addressed the bit allocation problem for stereo

image compression. To this end, we proposed a fast and accurate

bit allocation algorithm based on recent approximation of R-D func-

tions. Experimental results show the effectiveness of the proposed

bit allocation algorithm compared to the exhaustive search allocation

procedure. In future work, the proposed bit allocation method could

be extended to a multiview/video coding framework.
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Fig. 2: Performance of the proposed bit allocation method w.r.t to

the considered strategies for the images “Arch” and “Laundry”.

Image
PSNR gain (dB) Bitrate saving (%)

low middle high low middle high

Houseof -0.14 -0.13 -0.19 4.80 2.93 3.23

Pentagon -0.11 -0.08 -0.09 3.71 1.73 1.62

Arch -0.02 -0.01 -0.06 0.77 0.39 1.91

Ball -0.03 -0.01 -0.18 1.64 0.19 6.24

Laundry -0.25 -0.16 -0.04 4.69 2.03 0.42

Reindeer -0.25 -0.21 -0.25 4.63 3.36 3.57

Average -0.13 -0.10 -0.14 3.37 1.77 2.83

Table 1: The average PSNR differences and the bitrate saving be-

tween the proposed and exhaustive search methods at low, middle

and high bitrates.

Image Method Encoding Time (s) Ratio

Pentagon
Proposed 3.02

24.90Exhaustive search 75.18

Laundry
Proposed 3.14

18.30Exhaustive search 57.45

Table 2: Encoding time of the different approaches.
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