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ABSTRACT

This paper introduces a new paradigm for abnormal behavior

detection relying on the integration of contextual information

in Markov random fields. Contrary to traditional methods, the

proposed technique models the local density of object feature

vector, therefore leading to simple and elegant criterion for

behavior classification. We develop a Gaussian Markov ran-

dom field mixture catering for multi-modal density and inte-

grating the neighborhood behavior into a local estimate. The

convergence of the random field is ensured by online learn-

ing through a stochastic clustering algorithm. The system is

tested on an extensive dataset (over 2800 vehicles) for be-

havior modeling. The experimental results show that abnor-

mal behavior for a pedestrian walking, running and cycling on

the highway, is detected with 82% accuracy at the 10% false

alarm rate, and the system has an overall accuracy of 86% on

the test data.

Index Terms— Markov random fields, contextual infor-

mation integration, abnormal behavior detection.

1. INTRODUCTION

Automatic behavior analysis has become an active area of re-

search since the development of robust object tracking algo-

rithms. The pervasive need for increased security and general

monitoring of human activities has lead to the development of

automated video surveillance systems. However, the problem

of behavior analysis remains unsolved due to the intricate na-

ture of complex pattern modeling. It is also important to first

define what constitutes an abnormal behavior. We adopt the

somehow restricting consensus that abnormal behavior en-

compasses any behavior that cannot be considered as normal.

Therefore, efforts are focused on modeling normal behavior.

Normal behavior is traditionally modeled by a sequen-

tial, bottom-up chain of processes including object descrip-

tor extraction, activity modeling, complexity reduction and

behavior classification. Descriptors are typically kinematic

features, such as position and speed [7, 8], but moments and

projections [13] as well as color [11] have been used. Activity

modeling unveils the interdependence between descriptors in

order to generalize object patterns. Hidden Markov models

generally define the framework of object activities [10, 15]

leading to efficient Monte Carlo simulations. Principle com-

ponent analysis [12] and singular value decomposition [9]

aim to reduce the complexity of the underlying patterns by

decreasing the dimensionality of the descriptor space. Clus-

tering has also been used to this aim [1]. Finally, behavior

classification is seen as a two-class problem, performed by

SVM [14], Bayesian decision [6] or SOMs [5]. To date, tech-

niques proposed to analyze behavior are based on global ap-

proaches, hence leading to complex and erratic approxima-

tions in the process.

In this paper, we propose a unifying framework, relaxing

the need for a chain of tasks to extract abnormal behavior de-

cisions, by performing behavioral analysis based on local and

contextual modeling. Section 2 introduces contextual behav-

ioral information through Markov random fields. Section 3

develops the implementation of the vehicle behavior model

and the abnormal behavior detection algorithm. Section 4 de-

scribes the experimental setup and presents the results for ab-

normal behavior detection on highways. Concluding remarks

are presented in Section 5.

2. CONTEXTUAL BEHAVIORAL INFORMATION

The behavior of an object is traditionally analyzed by evalu-

ating its fit to a global model. Despite the attractive property

of generalization, a global approach fails, by nature, to model

local behavior. In the case of vehicle tracking, the behavior

can be simply, yet efficiently, modeled with the position and

the vector flow. Figure 1 illustrates a scenario of vehicles on a

road system and the underlying displacement densities at dif-

ferent sites. Markov random fields have been extensively used

in image processing for denoising, restoration and segmenta-

tion due to their ability to integrate neighboring information

and to provide local decisions. These two properties are ex-

ploited in this paper to model local patterns of behavior.
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Fig. 1. Vehicle traffic scenario. The probability density function of vehicle displacements is represented for different sites. A

global model would be cumbersome due to the complexity of implementation.

2.1. Markov Random Fields

Local modeling with a random field provides an accurate rep-

resentation of vehicle displacements. Random fields are sets

of random variables Xs arranged in graphs representing de-

pendencies between nodes, called sites. A random field R is

defined over a set of sites Ω such that R = {Xs : s ∈ Ω}.
In this paper, the sites are arranged in a 2-D lattice, represent-

ing the pixel locations in the image. A neighborhood ηs is

a subset of Ω describing the spatial contiguity of site s with

site n that satisfies s 6∈ ηs and s ∈ ηn ⇔ n ∈ ηs. A clique

c ∈ C is defined as a subset of a neighborhood where every

site is adjacent to every other. R is a Markov random field if

the probability of the realization r depends only on the neigh-

borhood ηs, that is

P (rs|rΩ−{s}) = P (rs|rηs
),∀s ∈ Ω . (1)

The probability density of a MRF is given by the Gibbs prob-

ability density (Hammersley-Clifford theorem):

p(r) =
1

Z
exp

(

−
1

T
U(r)

)

, (2)

where Z =
∫

exp (−U(r)/T )dr is a normalizing constant, T
is the temperature and U(r) is the energy function.

2.2. MRF Energy Function

Here, we consider the energy function to be composed of two

potentials, a clique potential Vc(r) and a spatial neighborhood

potential Vηs
(r), such that

U(r) =
∑

c∈C

Vc(r) +
∑

s∈Ω

Vηs
(r) . (3)

The potentials are modeled with a parametric density to main-

tain a compact representation of the field. The Gaussian func-

tion provides a practical representation of probability density

with two parameters: the mean µ and the covariance Σ.

Let θc represent the distribution parameters θc = {µc,Σc}.
Here, the clique energy Vc(r|θc) is defined as the Maha-

lanobis distance

Vc(r|θc) =
1

2
(r − µc)

T
Σ

−1

c (r − µc) . (4)

Furthermore, the spatial energy Vηs
(r|n) models the depen-

dency of the site s on a neighboring site n ∈ ηs as

Vηs
(r|n) =

(s− n)2

2σ2
, (5)

where σ is a scaling parameter. The clique and spatial proba-

bilities are subsequently defined as

Pc(r|θc) = exp (−Vc(r|θc))/λc

and

Pηs
(r|n) = exp (−Vηs

(r|n))/λn ,

where λc and λn are normalizing constants. The aforemen-

tioned assumptions result in a Gaussian distribution over the

MRF, leading to the so-called Gaussian Markov Random

Field (GMRF) modeled with p(r|θ), the estimate of p(r).

2.3. Gaussian Markov Random Field Mixture

The Gaussian Markov random field provides a unimodal esti-

mate of the local behavior through the clique and spatial po-

tentials. However, a multimodal estimate widens the scope

of Markov random fields to cater for more intricate behavior
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densities. For instance, the modeling of local displacement

densities for the scenario presented in Fig. 1 requires such an

estimate. For the problem of behavior modeling on highways,

the challenge becomes more complex since the vehicle paths

are not explicit (e.g. vehicle overtaking, stopping on the emer-

gency lane, etc.). A mixture of K Gaussian random fields is

therefore introduced as

p(r|Θ) =
K

∑

k=1

w(k)p(r|θc,k) , (6)

where Θ is the set of parameters θk, i.e. , Θ = {θ1, ..,θk}
and the w(k)’s are the respective weights of each component

in the mixture. It is implicitly assumed here that the number

of modes at a given site is smaller than or equal to K. The

Gaussian Markov random field mixture (GMRFM) offers a

convenient representation of the local density after training,

and leads to an efficient and elegant solution to abnormal be-

havior detection, using a simple matching criterion.

3. VEHICLE BEHAVIOR MODELING

The behavior of vehicles is modeled with the GMRF estimate

introduced in Eq. (6). Because of the difficulty of character-

izing abnormal behavior, a practical approach is considered:

(i) obtain an accurate estimate of normal behavior; (ii) reject

each vehicle displacement which does not fit to the normal

behavior. The rejection criterion sets the boundary between

normal and abnormal behavior.

3.1. Learning Normal Behavior

The learning of normal behavior via the estimate p(r|Θ) is

performed through the tuning of the set of parameters Θ. The

update is performed online for each realization of the random

field with the maximum-likelihood (ML) technique. Tradi-

tionally, the update of the MRF is performed site-wise by in-

tegration: each site s is visited and the values of the neigh-

borhood ηs are integrated in the estimate. In this paper, we

update the MRF by diffusion of information at site s onto

the neighborhood ηs. The fact that s ∈ ηn ⇔ n ∈ ηs for

MRFs ensures the equivalence of the two methods in terms

of convergence to the true random field equilibrium. The two

methods are also equivalent in terms of computation for fully

populated realizations.

However, when events are sparse, diffusion avoids ex-

haustive and inefficient update of the random field estimate:

only the set of active sites Ωlt is required in order to perform

the update of the MRF. An active site is defined as the site

of activity of a vehicle, a pedestrian, or any object of interest,

i.e. where the feature vector representing the object is located.

Therefore, if each realization xj is independent, the MRF can

be updated sequentially. This results in the following equiva-

lence for the update of the MRF:

p(r|Θ)⇔ {p(xj |Θ) : j ∈ Ωlt} . (7)

Traditionally, the ML estimator is used to determine

the optimal value k∗ for the parameter index as k∗ =
argmaxk[p(rt|Θt)] at each time step t. We use here a

stochastic clustering algorithm to find the optimal k∗ based

on the clique probability for a given realization xj . It

was shown by Bouzerdoum that a stochastic correction

ǫk,n ∼ N (., 0, σ2) improves the convergence of the clus-

tering algorithm [4]. For an active site s ∈ Ωlt , the stochastic

clustering approach seeks the ML in the GMRFM at each site

n ∈ ηs. Then, the set of parameters Θt and the set of weights

are updated with a recursive filter. Algorithm 1 describes the

procedure.

Algorithm 1 GMRFM learning

1: yk,n = Pc(xj |θk,n) + ǫk,n,
2: k∗ = argmaxk(yk,n) .
3: αn = λPc(xj |θk∗,n)Pηs

(xj |n) .
4: wn(k)← wn(k) + Pηs

(xj |n) ,
5: µk∗,n ← (1− αn)µk∗,n + αn xj ,

6: Σk∗,n ← (1 − αn)Σk∗,n + αn (xj − µk∗,n)T (xi −
µk∗,n) ,

7: Normalize the set of weights {wk}Kk=1
.

3.2. Simulated Annealing

The temperature T in Eq. (2) performs simulated annealing, a

technique used to increase the convergence of slow processes.

The training of the GMRFM requires a large number of field

realizations that are not available when modeling behavior.

Furthermore, it should be noted that each site of the MRF

does not receive an equal amount of information. For in-

stance, sites of high traffic receive more information than the

ones with low traffic. Consequently, the simulated annealing

should be local rather than global (as it is with the variable

T ). We integrate the simulated annealing into the stochastic

clustering process through the variance σ. A gradual decrease

in the value provides a rough convergence during the learning

stage while a finer convergence is achieved as the variance

is reduced. This cooling schedule is performed by a counter

ck∗,n incremented with the spatial probability Pηs
(xj |n) at

each visit of site s

ck∗,n ← ck∗,n + Pηs
(xj |n) , (8)

and the standard deviation of the shaking process is updated

as follows:

σk,n = σ0/ck∗,n . (9)
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Table 1. Summary of Videos for Normal Behavior

Video Sequence Duration No. of Vehicles

Video 001 199s 74

Video 002 360s 115

Video 003 480s 252

Video 004 367s 132

Video 005 140s 33

Video 006 312s 83

Video 007 302s 84

Video 008 310s 89

Video 009 80s 42

Video 010 495s 503

Video 011 297s 286

Video 012 358s 183

Video 013 377s 188

Video 014 278s 264

Video 015 269s 267

3.3. Abnormal Behavior Detection

The complexity of abnormal behavior detection is dramati-

cally reduced by the local approach adopted. In most cases,

normal and abnormal behavior of objects cannot be detected

from the global trajectory. For instance, in [2] we showed

that drunk driving was better detected with a local model

since DUI was characterized by the variance of the vehicle

trajectory that is smoothed out when learning with a global

approach. Abnormal behavior is therefore elegantly detected

with the local modeling offered by the GMRFM. The ML es-

timator introduced above directly provides the component of

the mixture with the best match to the feature vector x repre-

senting the object behavior. We use a matching criterion in the

clique probability to classify the behavior as normal/abnormal

as follows:

{

Vc(x|θ) ≤ λ → “normal” ,
Vc(x|θ) > λ → “abnormal” ,

(10)

where Vc(x|θ) represents the Mahalanobis distance.

4. EXPERIMENTAL SETUP AND RESULTS

This section is dedicated to the evaluation of the abnormal

behavior detection with GMRFM on traffic monitoring video

sequences. The vehicle traffic dataset and the experimental

setup are described in Subsection 4.1. The performance of

the algorithm is evaluated in Subsection 4.2.

4.1. Dataset and Experimental Setup

The proposed algorithm is tested on a traffic surveillance

dataset including over 2800 vehicles. The dataset encom-

passes a large range of video footage with various settings

(e.g. , height of the camera, angle of view, vanishing point

Fig. 2. Examples of abnormal behavior on highways.

position, etc.). The Projective Kalman filter, proposed re-

cently by Bouttefroy et al. [3], is implemented for extracting
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the object trajectories; it reduces the error in trajectory esti-

mation by integrating the camera calibration settings into the

Kalman filter equations. The trajectories are learnt for each

video sequence individually since the settings vary from one

video to another. The trajectory-based feature vector is com-

posed of the position (x, y) and the vector flow (dx, dy) of

the vehicle, i.e. x = [x, y, dx, dy]. Due to the rarety of abnor-

mal behavior, the 15 videos presented in Table 1 contain only

normal behavior, which are used to train and test the system.

In addition to this data, a video (Video 016) containing both

normal and abnormal behaviors is tested. Sample frames

from Video 016 sequence, representing abnormal behaviors

on a highway, are displayed in Fig. 2: abnormal behavior

consists of a person walking or riding a bike on the highway.

There are 20 recorded trajectories for abnormal behavior,

while there are more than 300 vehicles representing normal

behavior in the video sequence. Here, normal behavior is

modeled and abnormal behavior is detected as defined in

Eq. (10); that is, trajectories not fitting the learnt model are

considered abnormal.

4.2. Performance Analysis

To evaluate the performance of the system, the value of the

threshold λ must first be estimated. This parameter deter-

mines the false alarm rate and the correct detection rate of

abnormal behavior: a high threshold encourages normal be-

havior (see Eq. (10)) but lowers the rate of correct detection; a

low threshold acts inversely. We want to estimate the thresh-

old λ so that on average a 10% false detection rate is al-

lowed on the dataset. Because abnormal behavior is only

available in Video 16, the threshold is assumed to achieve a

constant false detection rate across the entire dataset. This is a

reasonable assumption since the Mahalanobis distance scales

the distance of a feature vector with the variance, yielding

a constant value for behavior/abnormal behavior boundary.

In a preliminary experiment, the training of the MRF with

Video 016 showed that a threshold of λ = 0.0344 achieves a

10% false detection rate with a correct detection rate of about

82%, see Fig. 3.

The algorithm is first tested on a pool of 15 videos rep-

resenting normal behavior. The training for the estimation

of the correct detection rate follows a 5-fold cross validation

process: four fifths of the trajectories are used for training

and one fifth for testing. The five-fold cross-validation pro-

cess ensures that all data have been used in training and test

sets. The results are summarized in Table 2. The average cor-

rect detection rate is 86.2% for a threshold value λ = 0.0344.

The variation in the tracking rate for each video is due to the

errors introduced in the track extraction. Video 004 presents

the lowest correct tracking rate. The weak performance of the

system on this video is due to the speed variation of vehicles.

Indeed, because Video 004 is a close view of the highway,

the accuracy of the object position is reduced and the classi-
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Fig. 3. ROC curve for the video sequence including abnormal

behavior. The curve is explored by tuning the parameter λ.

The value of 10% false detection rate gives a threshold value

λ = 0.0344.

Table 2. Correct Detection Rate for the Video Dataset

Video Sequences Correct Det.

Video 001 88.4%

Video 002 78.5%

Video 003 80.5%

Video 004 70.5%

Video 005 80.0%

Video 006 88.4%

Video 007 80.8%

Video 008 83.0%

Video 009 90.3%

Video 010 86.6%

Video 011 93.0%

Video 012 96.5%

Video 013 94.4%

Video 014 90.6%

Video 015 91.6%

Average 86.2%

fication is impaired. Normal behavior is characterized by a

specific speed and direction of displacement of the vehicles.

After sufficient training every object not matching these con-

ditions is considered as having abnormal behavior.

Figure 4 displays the classification of each displacement

in Video 016. It can be observed that the tracks of the vehi-

cles (vertical) are considered normal (blue) in most cases. The

false positive detections (normal behaviors considered abnor-

mal) are due to tracking errors. Two cases can be differen-

tiated: track loss and track uncertainty. In the first case, the

tracker on the vehicle undergoes large variations in position

when the track is lost. This results in displacements that do

not fit the estimated density, and hence detected as abnormal.

The second case occurs when there are smaller errors in the

estimation of the object position due to uncertainty in tracking

but the object is not lost. However, these variations are suf-

ficient to misclassify the behavior as abnormal. On the other
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Fig. 4. Abnormal behavior detection rendering for a system

trained and tested on real data. Blue represents the normal

behavior; red the abnormal behavior.

hand, the person walking and cycling on the highway has an

abnormal behavior. The system detects correctly abnormal

behavior because the trajectories do not fulfill the norms of

speed and direction.

5. CONCLUSION

This paper has presented a new framework for abnormal be-

havior detection. The Gaussian Markov random field mix-

ture, modeling the local object behavior, integrates contex-

tual information to carry out behavior modeling. The use of

a clique and spatial neighborhood potential describing the en-

ergy function is proposed to account for the spatial depen-

dencies between objects in a scenario. The training of the

GMRFM is performed by a stochastic clustering algorithm.

The modeling of behaviors with the GMRFM enables an

elegant detection of abnormal behavior since local densities

are represented. A simple test applied to the Mahalanobis

distance between the mode of the density and the feature vec-

tor provides efficient classification. The developed abnormal

behavior detection was applied to video sequences of high-

way traffic. A video containing abnormal behavior is used as

a benchmark to set up the behavior modeling. It results in

a correct detection rate of 82% for a false detection rate of

10%. Moreover, the system achieves 86.2% correct detection

rate on the entire dataset.
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