OPTIMIZED RESIDUAL IMAGE FOR STEREO IMAGE CODING
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ABSTRACT

Many research works have been developed for stereo image
compression purpose by focusing on the disparity compensa-
tion technique. For this reason, a great attention should be
paid to the generation of the disparity-compensated residual
image. Generally, the residual image is computed through
a simple substruction of the disparity-compensated reference
image from the target one. In this paper, we investigate two
techniques for optimizing the computation of the residual im-
age. The obtained results confirm the benefits of these opti-
mization approaches in the context of stereo image coding.

Index Terms— Stereo image, compression, disparity
compensation, optimization, ¢5 and ¢; minimization.

1. INTRODUCTION

Stereoscopic imaging has gained a growing interest in many
emerging applications such as 3D TV, 3D Digital cinema, im-
mersive games and videoconferencing. The main advantage
of stereoscopic technology is that it enhances the depth per-
ception and makes the 3D experience more vivid. This tech-
nology requires the acquisition of two images, called left and
right images, by recording two slightly different views an-
gles of the same scene. Thus, adding the third dimension to
the viewer/player leads to the doubling of the image data size
compared to the monoscopic case, and consequently, involves
a large amounts of stereo data. Therefore, it becomes nec-
essary to design efficient stereo compression techniques for
storing and transmitting purpose.

To this end, the simplest way for compressing stereo image
(SD) is the independent coding scheme where the left and right
images are encoded separately by using existing still image
coders. However, since these images result from the pro-
jection of the same 3D scene and so present similar visual
contents, it has been shown that more efficient joint coding
schemes can be developed by taking into account the inter-
image redundancies. More precisely, the common idea be-
hind most of the existing methods is based on the following
steps [1,2]:

@ First, one image is selected as a reference image (for
example the left one).

@ Then, the disparity map, representing the displacement
field between the pixels of the right and left images, is
often estimated using a block-based approach.

® After that, the right view, referred to as target image,
is predicted from the reference one using the estimated
disparity map, and the difference between the original
target image and the predicted one, called residual im-
age, is generated.

@ Finally, the reference and residual images as well as the
disparity map are encoded.

While the disparity map is often losslessly encoded using a
DPCM technique, the reference and residual images can be
encoded in different transform domains [3-6].
Therefore, the third step related to the generation of the resid-
ual image plays a key issue in the design of an efficient joint
stereo image compression scheme. Most of the reported
methods apply a simple subtraction between each pixel of the
target image and its homologous one in the reference image.
In order to better exploit the inter-view dependencies, we pro-
pose in this paper to use the neighborhood of the homologous
pixel to predict the pixel of the target image. To this end,
we investigate two minimization techniques, based on the
use of /5 and ¢; criteria, for optimizing the generation of the
residual image. Note that the benefits of such optimization
criteria have been recently shown in the context of the design
of lifting operators in a wavelet-based coding scheme [7].
The rest of this paper is organized as follows. In Section
2, the disparity compensation technique for stereo image cod-
ing is presented. The developed optimization techniques for
generating the residual image are described in Section 3. In
Section 4, experimental results are given and conclusions are
drawn in Section 5.

2. DISPARITY COMPENSATED RESIDUAL CODING

Stereo matching algorithms consist of assigning to each pixel
of the target image I(") a displacement value that allows to
find its homologous point in the reference image I("). Such
problem has been extensively studied in computer vision, and
a review of disparity estimation techniques can be found in



[8]. In the context of stereo image coding, block-matching
algorithms are often used because all pixels belonging to
the same block can be represented by only one value, and
so requires a few bits to encode the resulting disparity map.
More precisely, after partitioning the target image into non-
overlapping blocks, the disparity value associated to each
block is obtained by minimizing a similarity criterion D as
follows:

d= argmin  D(I(4,75), 10 +do, 7)), (1)
do€{1,....dmax}

where (i, j) are the spatial coordinates of the top left pixel in
the block, and d,,,, represents the potential maximum dis-
parity value. In general, the similarity criterion is the sum
of square difference (SSD) or the sum of absolute difference
(SAD).

Once the disparity map is estimated, the target image (") can
be predicted by shifting the reference image ") along the
horizontal direction thanks to the disparity information. Then,
the residual image I(®) is generated as follows:

1, 5) =1 (i, 5) — IV + d(4,5),5), ()

Thus, the reference image, the residual one and the disparity
map are encoded and transmitted to the decoder side. Note
that the reconstruction of the stereo images from these data
is straightforward. Indeed, the reference and residual images
as well as the disparity map are firstly decoded. Then, the
target image is predicted using the decoded reference image
and the disparity information. Finally, the target image is re-
constructed by adding the decoded residual image to the pre-
dicted target one.

3. OPTIMIZED RESIDUAL IMAGE

3.1. Motivation and computation strategy

Although most of the reported stereo image coding methods
generate the residual image according to Eq. (2), it is worth
pointing out that this computation strategy may be subopti-
mal. Indeed, some authors have proposed to weight the com-
pensation term to take into account the illumination variation
between the two views [9]:

19, 5) = 1")(i,§) — oIV (i + d(i,§),5), (3

where a € R

Most importantly, the homologous pixel I()(i + d(i, ), )
may not appear exactly on the epipolar line due to the pres-
ence of noise, the numerical rectification error, and the devi-
ation from the pinhole camera model. Therefore, during the
subtraction (i.e prediction) operation, instead of only taking
the homologous pixel I() (i 4 d(i, 5), j), it becomes more in-
teresting to use also its neighboring samples. More precisely,

we will consider the following equation for computing the
residual image:

19, 5) = 1"(i,5) — p 1, j), (4)
where
19, 5) = (10 G+d(i, ) +m,54+1)) _yrjacmentso )
—N/2<n<N/2

is the vector, of dimension (M + 1) x (N + 1), containing
the pixels of the left image used in the prediction step, and p
is the prediction vector.

Once the computation strategy of the residual image is de-
scribed, we focus now on the optimal design of the vector p.
The objective is to produce a compact representation of the
residual image by minimizing a given cost functional 7:

OPt — arg min J(p), (6)
pERE

where L = (M + 1) x (N +1).

In what follows, two minimization criteria will be investi-

gated.

p

3.2. /5 optimization technique

Since the residual image corresponds to a prediction error, the
vector of the prediction weights can be optimized by minimiz-
ing the variance of the residual coefficients (i.e their £5-norm).
Thus, the corresponding criterion is expressed as follows:

Ie) =33 (176, -»16.0) . @)

i=1j=1

where W and H are the width and the height of the stereo
images.

By minimizing this criterion, it can be checked that the opti-
mal prediction vector p°Pt must satisfy the well-known Yule-
Walker equations:

E[1) (i, )1 (4, 5) TIp°Pt = ET (4, )T (4, 5)],  (8)

where E[-] denotes the mathematical expectation.

3.3. /; optimization technique

Sparse representations have attracted a great deal of atten-
tion in many application fields during the last years such as
compressive sensing, image debluring and image compres-
sion [7, 10]. Therefore, with the ultimate aim of increasing
the sparsity of the residual coefficients, we propose to study
also an ¢; optimization technique for designing the optimal
prediction vector. More precisely, the objective consists in
minimizing the following ¢; criterion:

W H
JP) =Y 1765 -p T906 5. ©

i=1 j=1



It should be noted that the sparsest residual coefficients could
be obtained by minimizing an /, criterion. However, such
a problem is inherently non convex and NP-hard. For this
reason, we have focused on the use of ¢; criterion which is
convex and can be efficiently solved thanks to a class of prox-
imal optimization algorithms [11]. Among them, we adopt
the Douglas-Rachford algorithm which was found to be sim-
ple and effective for this problem [12].

Before describing the algorithm, let us first address the nec-
essary backgrounds on convex analysis and proximity opera-
tors [11].

3.3.1. Background on convex optimization tools

We denote by R¥ the K-dimensional Euclidean space with
norm || - ||. The main definitions which will be used in this
work are the followings:

e The indicator function of a convex set C C R¥ is given
by :

vx € RE, (10)

0 if xeC,
10(x) = {

+00 otherwise.

e The distance function to a nonempty set C C RX is
defined by:

vx e RE,  do(x) = inf [|x —y]|. (11)
yeC

e The projection of x € R¥ onto a nonempty closed con-
vex set C' C R¥ is the unique point Pc(x) € C such
that do(x) = ||x — Po(x)]]-

o I'x(RX) is the class of lower semicontinuous convex
function from R¥ to ] — 0o, 4+00] and not identically
equal to +oo.

o The proximity operator of a function f € T'o(R), de-
noted by prox , is defined as follows:

prox; : RE — RE

. 1
x> arg min f(y) + 5lx— vl (12)
yERK

3.3.2. Douglas-Rachford algorithm

In the following, the algorithm adopted to generate the resid-
ual image is described. We recall that the aim consists of
minimizing the ¢;-norm of the difference between the current
pixel of the right image 1) (i, j) and its predicted value. In

this context, the vector I(") = (I(T) (i, j)) 1<;< can be seen

1<j<H

as an element of the Euclidean space R" *# . The minimiza-
tion problem (9) can be rewritten as follows:

W H
. () (s ..
)lglelg;;II (i,5) — X (4, 5)], (13)

where V = {X = (X(i,j))lgigw\ Ip € RY, Y(i,j) €

1<j<H
{1, Wy x{1,....H}, X(i,j) = p 1 (i, j)}.

According to the definition of the indicator function (10),
the minimization problem (13) is equivalent to the following
one:

in fi(X) + (X)), (14)
where
AX) =17 =X,
W H
=33 1) - XG5, (15)
i=1 j=1
and
f2(X) = 1c(X). (16)

By writing it under this form, the minimization problem (14)
can be solved by using the Douglas-Rachford algorithm. The
obtained numerical solution can be obtained based on the fol-
lowing iterative algorithm :

Fix Sp € RW*H ~ > 0, ¢ €]0,1[ and
A€ e, 2—¢
for k=0,1,... do
Xp = proxvaSk,
Sk+1 = Sk + )\(pI'OXVJc1 (QXk - Sk) - Xk)
end
Algorithm 1: Douglas-Rachford algorithm.

As it can be seen in this algorithm, each iteration requires the
computation of two proximity operators for the functions f;
and f5. Note that closed-form expressions of the proximity
operator of some functions belonging to I'o(R¥) are devel-
oped in [11].

In our case, the proximity operator of the function ~yf; is
given by :

VS, € RY*H - prox_; (Sk) = (mk(i,§))1<i<w, (17)
1252H

where V(i,j) € {1,... , W} x {1,...,H},
(i, §) = soft_x x (Sk(i, ) = I (6, 5)) + 17 (i, ) (18)
and Vt € R,

sign(t)([t| —~) if [t] >~y

. (19)
0 otherwise.

SOft[_>\7)\} (t) = {



Concerning 7 fo, the proximity operator is given by:

VS, € RW*H  prox_; (Sx) = Py (Sk) (20)
= (pTI(C)(i>j))1§igwa
1<j<H

where

-1
p = (S,IOGNIGNT) B,y Seli NI )).
Finally, we should note that it has been shown in [13] that
every sequence Xy, generated by the Douglas-Rachford algo-
rithm converges to a solution to problem (14) if the selected
parameters A and +y satisfy the conditions given in Algorithm
1.

4. EXPERIMENTAL RESULTS

The simulations are performed on different standard stereo
images downloaded from some public stereovision datasets !*
2 and 3 A block-matching technique with a 8 x 8 block size
is employed to estimate firstly the disparity map. The latter
is then losslessly encoded by using a DPCM technique fol-
lowed by an arithmetic coder. Finally, to encode the reference
image as well the residual one, the 9/7 (resp. 5/3) wavelet
transform, retained for the lossy (resp. lossless) compression
mode of JPEG2000 [14], is applied over three resolution lev-
els. The resulting wavelet coefficients are then encoded by
using the entropy coder EBCOT.

In order to study the proposed optimization strategies, we fo-
cus on the generation of the residual image by considering the
three following experiments:

@ The first one uses the standard computation procedure
defined by Eq. (2). We refer to this method by “Stan-
dard”.

@ The second one consists of applying a weighting term
as given by Eq. (3). The weight is computed by min-
imizing the variance of the residual coefficients. This
method will be denoted by “Weighted-version”.

® The third and the fourth ones correspond to the pro-
posed optimization strategies. More precisely, accord-
ing to the notations used in Eq. (5), the pixels taken
during the disparity compensation process are obtained
by settingm € {—1,0,1} andn € {—1,0, 1}. The op-
timization based on the /5 and ¢ criteria will be desig-
nated by “Proposed-{2-OPT” and “Proposed-¢1-OPT”,
respectively.

In addition to these methods, we have also considered the in-
dependent coding scheme, denoted by “Independent”, where
the retained wavelet transform is applied separately to the left

Uhttp://vision.middlebury.edu/stereo/
Zhttp://vasc.ri.cmu.edu/idb/html/stereo/index.html
3http://vasc.ri.cmu.edu/idb/html/jisct/

and right images.

First, the performance of these different methods will be eval-
uated in the context of lossless coding mode. Since the ref-
erence image is encoded in the same way for all the tested
methods, we give in Table 1 the entropy of the multiresolu-
tion representations of the target image. The advantages of
such measure are that it is easily computed and it is indepen-
dent of the performance of any embedded coder. Compared
to the standard approach, the proposed optimized computa-
tion strategy of the residual image results in a gain which can
reach 0.25 bits per pixel (bpp). It can be also observed that
the /1 optimization technique achieves a further improvement
compared to the /5 optimization approach.

Table 1: Results in terms of entropy (in bpp) of the target
images for the considered methods.

SI Shrub | Art | Cones | Drumsticks
Independent 495 | 438 | 5.39 4.49
Standard 373 | 351 | 427 3.88
Weighted-version | 3.70 | 3.51 | 4.26 3.87
Proposed-¢-OPT | 3.39 | 3.51 | 4.22 3.88
Proposed-¢1-OPT | 3.37 | 3.46 4.19 3.83

Moreover, these methods have also been evaluated in the con-
text of lossy coding mode. Note that a closed loop-based cod-
ing structure has been employed [5]. The reported results are
given in terms of the average bitrate R,, and its corresponding
PSNR measure:
R 4+ Re) 4 R
Ry = T @1
2
2552
(MSE") + MSE(") /2’

PSNR = 101log,, (22)

where R, R(©) and R(9) denote respectively the bitrate of
the left, target, and disparity images. MSE® and MSE"" cor-
respond respectively to the mean squared error of the recon-
structed left and right images. Figure 1 illustrates the perfor-
mance of the different considered stereo images compression
methods for the stereo image “Shrub” and “Houseof™. It can
be observed that the proposed strategy outperforms the stan-
dard computation procedure by about 0.3-1 dB. Furthermore,
we have also compared the ¢;-based optimization technique
to the standard one in terms of Bjontegaard metric, often
used to measure the distance between two R-D curves [15].
The PSNR differences and the bitrate saving between these
two approaches are provided in Table 2 for low, middle and
high bitrates corresponding to the four target bitrate points
{0.15,0.2,0.3,0.4}, {0.5,0.6,0.7,0.8} and {0.9,1,1.1,1.2}
bpp, respectively. This table shows that the average of the
PSNR differences between the R-D results varies between
0.14-1.2 dB.

Finally, we illustrate in Fig. 2 the reconstructed “Pentagon”
stereo image. The reconstruction quality is evaluated in
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Fig. 1: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000
encoding for the stereo images “Shrub” and “Houseof”.

terms of PSNR. As it can be seen in Fig. 2, the proposed
¢ optimization strategy leads to better reconstruction quality
compared to the standard approach.

All these results confirm the benefits which can be drawn
from the proposed techniques for optimizing the residual
image.

5. CONCLUSION

In this work, we have focused on the optimization of the resid-
ual image to improve the stereo coding performance. More
precisely, for each pixel in the target image, we have proposed
to use the homologous pixel in the reference image as well
its neighboring to generate the residual image. To this end,
two optimization techniques including the ¢ and ¢ criteria
have been investigated. Experimental results show the inter-

Table 2: The average PSNR differences and the bitrate saving
at low, middle and high bitrates for different Stereo images.
The gain of the Proposed ¢1-OPT method w.r.t to the standard

one.
- PSNR gain (dB) Bitrate saving (%)
low | middle | high low middle | high
Shrub 0.60 | 091 1.07 | -11.97 | -14.04 | -13.81
Houseof | 0.34 | 0.59 | 0.72 | -10.19 | -11.31 | -10.80
Pentagon | 0.52 | 091 1.20 | -14.89 | -16.92 | -17.36
Art 022 ] 024 | 025 | 4.14 -3.42 -3.01
Cones 0.14 | 027 | 035 | -3.42 -4.85 -4.49
Average \ 0.37 \ 0.58 \ 0.72 \ -8.92 \ -10.11 \ -9.89 \

est of this procedure in the design of a residual-based stereo
coding scheme. While the developed optimization strategy
is performed by using a criterion defined in the spatial do-
main, it would be interesting to investigate in future a more
sophisticated criterion defined on the whole multiresolution
representation of the residual image.
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