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Abstract

This article introduces a new particle filtering approach
for object tracking in video sequences. The projective par-

ticle filter uses a linear fractional transformation, which
projects the trajectory of an object from the real world onto
the camera plane, thus providing a better estimate of the
object position. In the proposed particle filter, samples are
drawn from an importance density integrating the linear
fractional transformation. This provides a better coverage
of the feature space and yields a finer estimate of the poste-
rior density. Experiments conducted on traffic video surveil-
lance sequences show that the variance of the estimated tra-
jectory is reduced, resulting in more robust tracking.

1. Introduction

Vehicle tracking has been an active field of research

within the past decade due to the increase in computational

power and the development of video surveillance infras-

tructure. There is, today, a huge need for automatic traf-

fic control and regulation, automatic video surveillance and

abnormal event detection. Robust car tracking is a fun-

damental low-level task necessary to achieve such intelli-

gence. There have been various techniques developed to

track vehicles. The most common ones undoubtedly rely

on Bayesian filtering and, in particular, Kalman and parti-

cle filters. Kalman filter based tracking usually relies on the

kinematic variables and size of the vehicles estimated via

background subtraction followed by segmentation [7, 13],

although some techniques implement spatial features such

as corners and edges [11, 14] or Bayesian energy minimiza-

tion [5]. Particle filtering is preferred when the hypothesis

of multimodality is necessary, e.g. in case of severe occlu-

sion [12, 17]. Exhaustive search techniques involving tem-

plate matching [3] or occlusion reasoning [9] have also been

introduced to track vehicles.

However, vehicle tracking techniques seldom exploit the

characteristics of video surveillance sequences, namely:

• Slowly-varying vehicle Speed—since vehicles appear

in the field of view of the camera for a short while only,

their speed is quasi uniform;

• Constrained vehicle trajectory—the position of vehi-

cle is constrained by the curvature of the road and the

different lanes; and

• Projection of vehicle trajectory on the camera plane—

the trajectory of the vehicle on the camera plane un-

dergoes severe distortion due to the low elevation of

the traffic surveillance camera.

We propose here to integrate these characteristics to ob-

tain a finer estimate of the vehicle feature vector. More

specifically, the mapping of real-world vehicle trajectory

through linear fractional transformation enables a better es-

timate of the posterior density. A particle filter is thus im-

plemented, integrating cues on the projection in the impor-

tance density, resulting in a better exploration of the state

space and a reduction of the variance in the trajectory esti-

mation. The rest of the paper is organized as follows. Sec-

tion 2 introduces the general particle filtering framework.

Section 3 develops the Projective Particle Filter (PPF). In

particular, Section 3.1 derives the linear fractional transfor-

mation. An analysis of the PPF performance versus the

standard particle filter is presented in Section 4 before con-

cluding in Section 5.

2. Bayesian Filtering and Particle Filtering
Bayesian filtering provides a convenient framework for

object tracking due to the weak assumptions on the state

space model and the first order Markov chain recursive

properties. Without loss of generality, let us consider a sys-

tem with state x of dimension n and observation z of dimen-

sion m. Let us denote the set of states x1:k � {x1, ...,xk}
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and the set of observations z1:k � {z1, ..., zk}, where k is

a time index. The state space model can be expressed as

xk = f(xk−1) + vk−1 , (1)

zk = h(xk) + nk , (2)

when the process and observation noises, vk−1 and nk re-

spectively, are assumed to be additive. The vector-valued

functions f and h are the process and observation functions,

respectively. Bayesian filtering aims to estimate the distri-

bution of the state x from the observation z as p(xk|zk).
The probability density function (pdf) is estimated recur-

sively.

Monte Carlo methods and more specifically particle fil-

ters, based on Bayesian inference, have been extensively

employed for tracking problems [6, 15]. Multi-modality, in

particular, enables the system to evolve in time with sev-

eral hypotheses on the state in parallel. This property is

practical to corroborate or reject an eventual track after sev-

eral frames. Particle filters rely on Sequential Monte Carlo

(SMC) methods. A large number of samples {xi
k, i =

1..NS} are drawn from the posterior distribution p(xk|zk).
It follows from the law of large numbers that

p(xk|zk) ≈

NS∑
i=1

wi
kδ(xk − xi

k) , (3)

where wi
k are the weights, i.e.

∑
wi

k = 1, and δ(.) is the

Kronecker delta function. However, because it is often dif-

ficult to draw samples from the posterior pdf, an importance

density q(.) is used to generate the samples xi
k. It can then

be shown that [1]

wi
k ∝ wi

k−1

p(zk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
. (4)

The choice of the importance density is crucial to obtain-

ing a good estimate of the posterior pdf. It has been shown

that the set of particles and associated weights {xi
k, wi

k}
will eventually degenerate, i.e. most of the weights will be

carried by a small number of samples and a large number

of samples will have negligible weight [10]. In such a case,

and because samples are not drawn from the true posterior,

the degeneracy problem cannot be avoided and resampling

of the set needs to be performed. Nevertheless, the closer

the importance density is from the true posterior density, the

slower the set {xi
k, wi

k} will degenerate; a good choice of

importance density reduces the need for resampling. In this

paper, we propose to model the fractional transformation

mapping the real world space onto the camera plane and

to integrate the projection through the importance density

q(xi
k|xi

k−1, zk) in the particle filter.

Xvp

p

C

Figure 1. Projection of the vehicle on a plane parallel to the image

plane of the camera. The graph shows a cross section of the scene

along the direction d (tangential to the road).

3. Projective Particle Filter

The particle filter developed is named Projective Parti-

cle Filter (PPF) because the vehicle position is projected on

the camera plane and used as an inference to diffuse the

particles in the feature space. One of the particularities of

the PPF is to differentiate between the importance density

and the transition prior pdf whilst the SIR (Sampling Impor-

tance Resampling) filter, also called standard particle filter,

does not. Therefore, we need to define the importance den-

sity from the fractional transformation as well as the transi-

tion prior p(xk|xk−1) and the likelihood p(zk|xk) in order

to update the weights in Eq. (4).

3.1. Linear Fractional Transformation

The fractional transformation is used to estimate the po-

sition of the object on the camera plane (x) from its position

on the road (r). The physical trajectory is projected onto the

camera plane as shown in Fig. 1. The distortion of the ob-

ject trajectory happens along the direction d, tangential to

the road. The axis dp is parallel to the camera plane; the

projection x̂ of the vehicle position on dp is thus propor-

tional to the position of the vehicle on the camera plane. The

value Xvp, projection of the vanishing point on dp, scales

x̂ to obtain the position of the vehicle in terms of pixels.

For practical implementation, it is useful to express the pro-

jection along the tangential direction d onto the dp axis in

terms of video footage parameters that are easily accessible,

namely:

• Angle of view (θ);

• Height of the camera (H); and

• Ground distance (D) between the camera and the first

location captured by the camera.
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It can be inferred from Fig. 1, after applying Al-Kashi theo-

rem, that:

x̂2 = r2 + �2 − 2r� cos (α) , (5)

and

�2 = x̂2 + r2 − 2rx̂ cos (β) , (6)

where cos (α) = (D + r)/
√

(H2 + (D + r)2) and β =
arctan(D/H) + θ/2. After squaring and substituting �2

in (5), we obtain:

(x̂2 + r2 − 2rx̂ cos (β)) cos2 (α)r2 =
(
r2 − rx̂ cos (β)

)2
.

(7)

Grouping the terms in x̂ to get a quadratic form leads to

x̂2(cos2 (α) − cos2 (β)) + 2x̂r cos (β)(1 − cos2 (α))

+ r2(cos2 (α) − 1) = 0 . (8)

After discarding the non physically acceptable solution, one

gets

x̂(r) =
rH

(D + r) sin β + H cos β
. (9)

However, because D � H and θ is small in practice (see

Table 1), the angle β is approximately equal to π/2 and,

consequently, Eq. (9) simplifies to x̂ = rH/(D + r). Note

that this result can be verified using Thales’s theorem. Fi-

nally, we scale x̂ with the position of the vanishing point

Xvp in the image to find the position of the vehicle in terms

of pixel location1, which yields

x =
Xvp

lim
r→∞ x̂(r)

x̂(r) =
Xvp

H
x̂(r) . (10)

The projected speed and the observed size of the object

onto the camera plane are also important variables for the

problem of tracking and are thus necessary to derive. They

can be directly extrapolated from the position of the object

in the camera plane. The observed speed of the vehicle ẋ is

ẋ = fẋ(x) =
(H − x)2 v

H(D − v) + xv
, (11)

where v is the parameter representing the real speed (as-

sumed constant) of the object. The observed size of the

vehicle b can also be derived from the position x if the real

size of the vehicle s is known:

b = fb(x) =
sD

( HD
H−x )2 − ( s

2 )2
. (12)

1The position of the vanishing point can be approximated either manu-

ally or automatically [16]. For the experiment purpose, we manually esti-

mated the vanishing point.

3.2. Importance Density and Transition Prior

The projective particle filter integrates the linear

fractional transformation into the importance density

q(xi
k|xi

k−1, zk). The state vector is modeled with the po-

sition, the speed and the size of the vehicle in the image

such as x = {x, y, ẋ, ẏ, b}T , where x and y are the Carte-

sian coordinates of the vehicle, ẋ and ẏ are the respective

speeds and b is the apparent size of the vehicle. Object

tracking is traditionally performed using a standard kine-

matic model (Newton’s Laws), taking into account the po-

sition, the speed and the size of the object2. In this paper, the

kinematic model is refined with the estimation of the speed

and the object size via linear fractional transformation on

the distorted direction d. Let us define the vector-valued

function f as

⎡
⎢⎢⎢⎢⎣

xk

yk

ẋk

ẏk

bk

⎤
⎥⎥⎥⎥⎦ = f(xk−1) =

⎡
⎢⎢⎢⎢⎣

xk−1 + fẋ(xk−1)
yk−1 + ẏk−1

fẋ(xk−1)
ẏk−1

fb(xk−1)

⎤
⎥⎥⎥⎥⎦ . (13)

It is important to note that since the linear fractional

transformation is along the x axis, the distortion is severe

and the function fẋ provides a better estimate than a sim-

ple kinematic model taking into account the speed of the

vehicle. On the other hand, the distortion along the y
axis is much weaker and such an estimation is not nec-

essary. The novelty in this paper resides in the estima-

tion of the vehicle position along the x axis and its size

through fẋ and fb(x), respectively. It is worthwhile not-

ing that the standard kinematic model of the vehicle is re-

covered when fẋ(xk−1) = ẋk−1 and fb(x) = bk−1. The

vector-valued function g(xk−1) = {f(xk−1)|fẋ(xk−1) =
ẋk−1, fb(x) = bk−1} denotes the standard kinematic model

in the sequel. The samples are drawn from the impor-

tance density q(xk|xk−1, zk) = N (xk, f(xk−1), Σq) and

the standard kinematic model is used in the prior distribu-

tion p(xk|xk−1) = N (xk,g(xk−1),Σp), where N (., μ,Σ)
denotes the normal distribution of covariance matrix Σ cen-

tered on μ. The distributions are considered Gaussian and

isotropic to evenly spread the samples around the estimated

state vector at time step k.

3.3. Likelihood Estimation

The estimation of the likelihood p(zk|xi
k) is based on the

distance between color histograms as in Comaniciu et al.
[4]. Let us define an M -bin histogram H = {H[u]}u=1..M ,

representing the distribution of J color pixel values c, as

follows:

2The size of the object is essentially maintained for the purpose of like-

lihood estimation.
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H[u] =
1
J

J∑
i=1

δ[κ(ci) − u] , (14)

where u is the set of bins regularly spaced on the interval

[1, M ], κ is a linear binning function providing the bin in-

dex of pixel value ci, and δ(.) is the Kronecker delta func-

tion. The pixels ci are selected from a circle of radius b
centered on (x, y). Indeed, after projection on the camera

plane, the circle is the standard shape that delineates the

vehicle best. Let us denote the target and the candidate his-

tograms by Ht and Hx, respectively. The Bhattacharyya

distance between two histograms is defined as:

Δ(x) =

(
1 −

m∑
u=1

√
Ht[u]Hx[u]

)
. (15)

Finally, the likelihood p(zk|xi
k) is calculated as p(zk|xi

k) ∝
exp (−Δ(xi

k)).

3.4. Projective Particle Filter Implementation

Algorithm 1 Projective Particle Filter Algorithm

Require: xi
0 ∼ q(x0|z0) and wi

0 = 1/NS

for i = 1 to NS do
Compute f(xi

k−1) from Eq. (13)

Draw xi
k ∼ q(xi

k|xi
k−1, zk) = N (xi

k, f(xi
k−1),Σq)

Compute ratio γk = N (xk|xk−1, μγ ,Σγ)
Update weights wi

k = wi
k−1 × γkp(zk|xk)

end for
Normalize wi

k

if Neff < N then
l = 0
for i = 1 to NS do

σi = cumsum(wi
k)

while l
NS

< σi do
xl

k = xi
k

wl
k = 1/NS

l = l + 1
end while

end for
end if

The implementation of the projective particle filter al-

gorithm is summarized in Algorithm 1. Because most ap-

proaches to tracking take the prior distribution as impor-

tance density, the samples xi
k are directly drawn from the

standard kinematic model. In this paper we differentiate be-

tween the prior and the importance density to obtain a better

distribution of the samples. The initial state x0 is chosen as

x0 = [x0, y0, 10, 0, 20]T where x0 and y0 are the initial co-

ordinates of the object. The value x0 is thus used to draw

the set of samples xi
0 ∼ q(x0|z0) = N (xi

0, f(x0), Σq).

(a) Standard (b) Projective

Figure 2. Vehicle track for (a) the standard and (b) the projective

particle filter. The projective particle filter exhibits a lower vari-

ance in the position estimation.

The transition prior p(xk|xk−1) and the importance den-

sity q(xk|xk−1, zk) are both modeled with Gaussian noises.

The prior covariance matrix and mean are initialized as

Σp = diag([6 1 1 1 4]) and μp = g(x0), respectively,

and Σq = diag([1 1 0.5 1 4]) and μq = f(x0), for

the importance density. As a result, the variable γk is it-

self drawn from a Gaussian process N (xk|xk−1, μγ ,Σγ)
with covariance matrix Σγ = (Σ−1

p − Σ−1
q )−1 and μγ =

Σ(Σ−1
p μp − Σ−1

q μq) and Σp �= Σq .

A resampling scheme is necessary to avoid the degener-

acy of the particle set. Systematic sampling [8] is performed

when the variance of the weight set is too large, i.e. when

the number of the effective sample size Neff falls below

a given threshold N , arbitrarily set to 0.6NS in the imple-

mentation. The number of effective samples is evaluated

as

Neff =
1

NS∑
i=1

(wi
k)2

. (16)

4. Experiments and Results

The standard and the projective particle filters are eval-

uated in this section on traffic surveillance data. An im-

portant measure in vehicle tracking is the variance of the

trajectory. Indeed, high-level tasks, such as abnormal be-

havior or DUI detection, require an accurate tracking of the

vehicle and, in particular, a low Mean Squared Error (MSE)

for the position. Figure 2 displays a track estimated with

the projective particle filter and the standard particle filter.

We run two experiments aiming to evaluate the variance for

the standard and the projective particle filters: one with au-

tomatic variance estimation and the other one with ground

truth labeling. A third experiment is conducted to evaluate

the suitability of the importance pdf. The video sequences

are footage of vehicles traveling on a highway. Although

the roads are straight in the dataset, the algorithm can be

applied to curved roads with approximation of the param-

eters on the short distance because the projection tends to
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Figure 3. Alignment of theoretic and extracted trajectories along

the d-axis. The difference between the two tracks represents error

in the estimation of the trajectory.

linearize the curves on the camera plane. The parameters

θ, H and D defining the linear fractional transformation are

recorded in Table 1. The dataset is composed of 205 vehi-

cles assumed to have a constant speed of v = 25m.s−1. Note

that the constraint on the speed can be relaxed as long as the

variations are slow.

Table 1. Linear Fractional Transformation Parameters
Video Sequence H θ D

Video 1 5.5m 12.5 ± 0.15 deg 80m
Video 2 5.5m 19.2 ± 0.2 deg 57m
Video 3 5.5m 19.2 ± 0.2 deg 57m

In the first experiment, the performance of each tracker is

evaluated in terms of MSE using the entire dataset. In order

to avoid the tedious task of manually extracting the ground-

truth of every track, a synthetic track is generated automati-

cally based on the parameters of the real world projection of

the vehicle trajectory on the camera plane. Figure 3 shows

that the theoretic and the manually extracted tracks match.

The initialization of the tracks is performed as in [2]. How-

ever, because the initial position of the vehicle when the

tracking starts may differ from one track to another, it is

necessary to align the theoretic and the extracted tracks in

order to cancel the bias in the estimation of the MSE. The

average MSE for each video sequence is summarized in Ta-

ble 2. It can be inferred that the projective particle filter per-

forms better on the entire dataset than the standard particle

filter.

Table 2. MSE for the standard and the projective particle filters

Video Sequence Video 1 Video 2 Video 3

Avg. MSE Std PF 2.26 0.99 1.07
Avg. MSE Proj. PF 1.89 0.83 1.02

In the second experiment, we evaluate the performance

of the two tracking algorithms w.r.t. the number of particles.

Here, the ground truth is manually labeled in the video se-

quence. We arbitrarily decide to ground truth the first 5

trajectories of the first video to ensure the impartiality of
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Figure 4. Position mean squared error versus number of particles

for the standard and the projective particle filter.
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Figure 5. Position mean squared error for 5 ground truth labeled

vehicles using the standard and the projective particle filter. Top:

with 20 particles; bottom: with 100 particles.

the evaluation. Figure 4 displays the average MSE over 10

epochs for the first trajectory and for different values of NS .

Figure 5 presents the average MSE for 10 epochs on the 5

ground truth tracks for NS = 20 and NS = 100. It is clear

that the projective particle filter outperforms the standard

particle filter in terms of MSE. The better accuracy of the

PPF is due to the finer estimation of the sample distribution

by the importance density and the consequent adjustment of

the weights, all parameters being identical in the compari-

son.

In the third experiment, we propose to compare the stan-

dard and the projective particle filters without the resam-

pling step. This evaluation determines the suitability of

the importance density to the problem tackled. Indeed, the

closer the importance density is from the posterior density,

the less resampling is needed. However, because the two

pdfs are different, a larger number of particles is required

to draw the results. We choose NS = 300 for the evalua-

tion. Figure 6 shows the position MSE for the standard and

the projective particle filters for 80 trajectories in Video 3;

the average MSE are 1.10 and 0.58, respectively. For the
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Figure 6. Position mean squared error for the standard and the pro-

jective particle filter without resampling step.

problem of vehicle tracking, the importance density q used

in the projective particle filter is therefore more suitable to

draw samples from compared to the prior density, used in

the standard particle filter. Less resampling is required as a

consequence of the adequate choice of importance density.

It is also worth noting that the lower MSE in this experi-

ment compared to the one exhibited in Table 2 for Video 3

is due to the higher number of particles.

5. Conclusion
The paper proposed a new particle filter integrating the

linear fractional transformation in the importance density.

This projection maps the real world position of a vehicle

onto the camera plane providing a better distribution of the

samples in the feature space. However, because the prior

is not used to sample, the weights of the designed Projec-

tive Particle Filter have to be readjusted. The standard and

the projective particle filters have been evaluated on traf-

fic surveillance videos. It has been shown that the MSE on

the trajectory of the vehicles is reduced with the projective

particle filter. Furthermore, the proposed technique outper-

forms the standard particle filter in terms of MSE regardless

of the number of particles. It has also been shown that the

degeneracy of the samples set is reduced when the impor-

tance density integrates the linear fractional transformation.
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